Что такое межклеточное вещество


межклеточное вещество - это... Что такое межклеточное вещество?

  • МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО — составная часть разл. разновидностей соединит, ткани животного организма. Представлено жидкостью (плазма крови, лимфа), волокнами (коллагеновые, эластические, ретикулярные) и основным веществом, или матрнксом, в к ром преобладают мукополисахариды …   Биологический энциклопедический словарь

  • Межклеточное вещество — вещество между клеточками данной ткани, являющееся результатом деятельности их; иногда оно может находиться в ткани в весьма малом количестве (эпителии), в других случаях составлят главную массу ткани (большая часть соединительных тканей) см.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО — вещество полисахаридной природы, находящееся между оболочками растительных клеток, посредством которого они склеиваются между собой, образуя ткани …   Словарь ботанических терминов

  • Межклеточное вещество — Внеклеточным матриксом (англ. extracellular matrix, ECM) в биологии называют неклеточные структуры ткани. Внеклеточный матрикс составляет основу соединительной ткани, и образуется её клетками. Обеспечивает механическую поддержку тканей. Основные… …   Википедия

  • Межклеточное вещество — – не клеточная соединительная ткань, состоящая из волокнистых структур, окруженных аморф ным веществом …   Словарь терминов по физиологии сельскохозяйственных животных

  • Инкрустирующее вещество — (matière incrustante, inrcrustirende Substanz, incrusting matter; хим.) входит вместе с клетчаткой в состав организованного вещества оболочек клеток древесины, пробки, растительной кожицы и вообще всех растительных тканей, образуемых клетками или …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • прехондральное вещество — (substantia prechondralis; пре + греч. chondros хрящ) межклеточное вещество прехондральной ткани …   Большой медицинский словарь

  • промежуточное вещество — см. Межклеточное вещество …   Большой медицинский словарь

  • Прехондра́льное вещество́ — (substantia prechondralis; Пре + греч. chondros хрящ) межклеточное вещество прехондральной ткани …   Медицинская энциклопедия

  • Промежу́точное вещество́ — см. Межклеточное вещество …   Медицинская энциклопедия

dic.academic.ru

Межклеточное вещество - это... Что такое Межклеточное вещество?

  • МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО — составная часть разл. разновидностей соединит, ткани животного организма. Представлено жидкостью (плазма крови, лимфа), волокнами (коллагеновые, эластические, ретикулярные) и основным веществом, или матрнксом, в к ром преобладают мукополисахариды …   Биологический энциклопедический словарь

  • Межклеточное вещество — вещество между клеточками данной ткани, являющееся результатом деятельности их; иногда оно может находиться в ткани в весьма малом количестве (эпителии), в других случаях составлят главную массу ткани (большая часть соединительных тканей) см.… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО — вещество полисахаридной природы, находящееся между оболочками растительных клеток, посредством которого они склеиваются между собой, образуя ткани …   Словарь ботанических терминов

  • межклеточное вещество — (substantia intercellularis, LNH; син. промежуточное вещество) неклеточная часть соединительной ткани, состоящая из волокнистых структур, окруженных аморфным основным веществом …   Большой медицинский словарь

  • Межклеточное вещество — – не клеточная соединительная ткань, состоящая из волокнистых структур, окруженных аморф ным веществом …   Словарь терминов по физиологии сельскохозяйственных животных

  • Инкрустирующее вещество — (matière incrustante, inrcrustirende Substanz, incrusting matter; хим.) входит вместе с клетчаткой в состав организованного вещества оболочек клеток древесины, пробки, растительной кожицы и вообще всех растительных тканей, образуемых клетками или …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • прехондральное вещество — (substantia prechondralis; пре + греч. chondros хрящ) межклеточное вещество прехондральной ткани …   Большой медицинский словарь

  • промежуточное вещество — см. Межклеточное вещество …   Большой медицинский словарь

  • Прехондра́льное вещество́ — (substantia prechondralis; Пре + греч. chondros хрящ) межклеточное вещество прехондральной ткани …   Медицинская энциклопедия

  • Промежу́точное вещество́ — см. Межклеточное вещество …   Медицинская энциклопедия

Page 2

Биоло́гия (греч. βιολογία — βίο, био, жизнь; др.-греч. λόγος — учение, наука) — система наук, объектами изучения которой являются живые существа и их взаимодействие с окружающей средой. Биология изучает все аспекты жизни, в частности, структуру, функционирование, рост, происхождение, эволюцию и распределение живых организмов на Земле. Классифицирует и описывает живые существа, происхождение их видов, взаимодействие между собой и с окружающей средой.

Как особая наука биология выделилась из естественных наук в XIX веке, когда учёные обнаружили, что живые организмы обладают некоторыми общими для всех характеристиками. Термин «биология» был введён независимо несколькими авторами: Фридрихом Бурдахом в 1800 году, в 1802 году Готфридом Рейнхольдом Тревиранусом[1] и Жаном Батистом Ламарком.

В основе современной биологии лежат пять фундаментальных принципов: клеточная теория, эволюция, генетика, гомеостаз и энергия[2][3]. В наше время биология — стандартный предмет в средних и высших учебных заведениях всего мира. Ежегодно публикуется более миллиона статей и книг по биологии, медицине и биомедицине[4].

В биологии выделяют следующие уровни организации:

  • Клеточный, субклеточный и молекулярный уровень: клетки содержат внутриклеточные структуры, которые строятся из молекул.
  • Организменный и органно-тканевой уровень: у многоклеточных организмов клетки составляют ткани и органы. Органы же, в свою очередь, взаимодействуют в рамках целого организма.
  • Популяционный уровень: особи одного и того же вида, обитающие на части ареала, образуют популяцию.
  • Видовой уровень: свободно скрещивающиеся друг с другом особи обладающие морфологическим, физиологическим, биохимическим сходством и занимающие определённый ареал (район распространения) формируют биологический вид.
  • Биогеоценотический и биосферный уровень: на однородном участке земной поверхности складываются биогеоценозы, которые, в свою очередь, образуют биосферу.

Большинство биологических наук является дисциплинами с более узкой специализацией. Традиционно они группируются по типам исследуемых организмов: ботаника изучает растения, зоология — животных, микробиология — одноклеточные микроорганизмы. Области внутри биологии далее делятся либо по масштабам исследования, либо по применяемым методам: биохимия изучает химические основы жизни, молекулярная биология — сложные взаимодействия между биологическими молекулами, клеточная биология и цитология — основные строительные блоки многоклеточных организмов, клетки, гистология и анатомия — строение тканей и организма из отдельных органов и тканей, физиология — физические и химические функции органов и тканей, этология — поведение живых существ, экология — взаимозависимость различных организмов и их среды.

Передачу наследственной информации изучает генетика. Развитие организма в онтогенезе изучается биологией развития. Зарождение и историческое развитие живой природы — палеобиология и эволюционная биология.

На границах со смежными науками возникают: биомедицина, биофизика (изучение живых объектов физическими методами), биометрия и т. д. В связи с практическими потребностями человека возникают такие направления, как космическая биология, социобиология, физиология труда, бионика.

Традиционно научными исследованиями в области биологии занимаются университеты, хотя не всегда соответствующие факультеты называются биологическими. Например, в Московском государственном университете им. М. В. Ломоносова кроме биологического факультета имеются также факультет биоинженерии и биоинформатики, факультет фундаментальной медицины и НИИ физико-химической биологии. Кроме университетов научные исследования проводят государственные и частные институты, которые в России преимущественно относятся к системе Российской академии наук (см. список институтов), Российской академии сельскохозяйственных наук или Российской академии медицинских наук.

Биологи

  • См. отдельную статью Список биологов

Биологический метод

Биологические науки используют методы наблюдения, моделирования (в т.ч. компьютерного), описания, сравнения, экспериментов (опыта) и исторического сравнения.

История биологии

Основная статья: История биологии

Хотя концепция биологии как особой естественной науки возникла в XIX веке, биологические дисциплины зародились ранее в медицине и естественной истории. Обычно их традицию ведут от таких античных учёных как Аристотель и Гален через арабских медиков аль-Джахиза[5], ибн-Сину[6], ибн-Зухра[7] и ибн-аль-Нафиза[8]. В эпоху Возрождения биологическая мысль в Европе была революционизирована благодаря изобретению книгопечатания и распространению печатных трудов, интересу к экспериментальным исследованиям и открытию множества новых видов животных и растений в эпоху Великих географических открытий. В это время работали выдающиеся умы Андрей Везалий и Уильям Гарвей, которые заложили основы современной анатомии и физиологии. Несколько позже Линней и Бюффон совершили огромную работу по классификации форм живых и ископаемых существ. Микроскопия открыла для наблюдения ранее неведомый мир микроорганизмов, заложив основу для развития клеточной теории. Развитие естествознания, отчасти благодаря появлению механистической философии, способствовало развитию естественной истории[9][10].

К началу XIX века некоторые современные биологические дисциплины, такие как ботаника и зоология, достигли профессионального уровня. Лавуазье и другие химики и физики начали сближение представлений о живой и неживой природе. Натуралисты, такие как Александр Гумбольдт, исследовали взаимодействие организмов с окружающей средой и его зависимость от географии, закладывая основы биогеографии, экологии и этологии. В XIX веке развитие учения об эволюции постепенно привело к пониманию роли вымирания и изменчивости видов, а клеточная теория показала в новом свете основы строения живого вещества. В сочетании с данными эмбриологии и палеонтологии эти достижения позволили Чарльзу Дарвину создать целостную теорию эволюции путём естественного отбора. К концу XIX века идеи самозарождения окончательно уступили место теории инфекционного агента как возбудителя заболеваний. Но механизм наследования родительских признаков всё ещё оставался тайной[9][11][12].

В начале XX века Томас Морган и его ученики заново открыли законы, исследованные ещё в середине XIX века Грегором Менделем, после чего начала быстро развиваться генетика. К 1930-м годам сочетание популяционной генетики и теории естественного отбора породило современную эволюционную теорию или неодарвинизм. Благодаря развитию биохимии были открыты ферменты и началась грандиозная работа по описанию всех процессов метаболизма. Раскрытие структуры ДНК Уотсоном и Криком дало мощный толчок для развития молекулярной биологии. За ним последовало постулирование центральной догмы, расшифровка генетического кода, а к концу XX века — и полная расшифровка генетического кода человека и ещё нескольких организмов, наиболее важных для медицины и сельского хозяйства. Благодаря этому появились новые дисциплины геномика и протеомика. Хотя увеличение количества дисциплин и чрезвычайная сложность предмета биологии породили и продолжают порождать среди биологов всё более узкую специализацию, биология продолжает оставаться единой наукой, и данные каждой из биологических дисциплин, в особенности геномики, применимы во всех остальных[13][14][15][16].

Биологическая картина мира

Существует пять принципов, объединяющих все биологические дисциплины в единую науку о живой материи[2]:

  • Клеточная теория. Клеточная теория — учение обо всём, что касается клеток. Все живые организмы состоят, как минимум, из одной клетки, основной функциональной единицы каждого организма. Базовые механизмы и химия всех клеток во всех земных организмах сходны; клетки происходят только от ранее существовавших клеток, которые размножаются путём клеточного деления. Клеточная теория описывает строение клеток, их деление, взаимодействие с внешней средой, состав внутренней среды и клеточной оболочки, механизм действия отдельных частей клетки и их взаимодействия между собой.
  • Эволюция. Через естественный отбор и генетический дрейф наследственные признаки популяции изменяются из поколения в поколение.
  • Теория гена. Признаки живых организмов передаются из поколения в поколение вместе с генами, которые закодированы в ДНК. Информация о строении живых существ или генотип используется клетками для создания фенотипа, наблюдаемых физических или биохимических характеристик организма. Хотя фенотип, проявляющийся за счёт экспрессии генов, может подготовить организм к жизни в окружающей его среде, информация о среде не передаётся назад в гены. Гены могут изменяться в ответ на воздействия среды только посредством эволюционного процесса.
  • Гомеостаз. Физиологические процессы, позволяющие организму поддерживать постоянство своей внутренней среды независимо от изменений во внешней среде.
  • Энергия. Атрибут любого живого организма, существенный для его состояния.

Клеточная теория

Основная статья: Клеточная теория

Клетка — базовая единица жизни. Согласно клеточной теории, всё живое вещество состоит из одной или более клеток, либо из продуктов секреции этих клеток. Например, раковины, кости, кожа, слюна, желудочный сок, ДНК, вирусы. Все клетки происходят из других клеток путём клеточного деления, и все клетки многоклеточного организма происходят из одной оплодотворённой яйцеклетки. Даже протекание патологических процессов, таких как бактериальная или вирусная инфекция, зависит от клеток, являющихся их фундаментальной частью[17].

Эволюция

Основная статья: Эволюция

Центральная организующая концепция в биологии состоит в том, что жизнь со временем изменяется и развивается посредством эволюции, и что все известные формы жизни на Земле имеют общее происхождение. Это обусловило сходство основных единиц и процессов жизнедеятельности, упоминавшихся выше. Понятие эволюции было введено в научный лексикон Жаном-Батистом Ламарком в 1809 году. Чарльз Дарвин через пятьдесят лет установил, что её движущей силой является естественный отбор, так же как искусственный отбор сознательно применяется человеком для создания новых пород животных и сортов растений[18]. Позже в синтетической теории эволюции дополнительным механизмом эволюционных изменений был постулирован генетический дрейф.

Эволюционная история видов, описывающая их изменения и генеалогические отношения между собой, называется филогенез. Информация о филогенезе накапливается из разных источников, в частности, путём сравнения последовательностей ДНК или ископаемых останков и следов древних организмов. До XIX века считалось, что в определённых условиях жизнь может самозарождаться. Этой концепции противостояли последователи принципа, сформулированного Уильямом Гарвеем: «всё из яйца» («Omne vivum ex ovo», лат.), основополагающего в современной биологии. В частности, это означает, что существует непрерывная линия жизни, соединяющая момент первоначального её возникновения с настоящим временем. Любая группа организмов имеет общее происхождение, если у неё имеется общий предок. Все живые существа на Земле, как ныне живущие, так и вымершие, происходят от общего предка или общей совокупности генов. Общий предок всех живых существ появился на Земле около 3,5 млрд. лет назад. Главным доказательством теории общего предка считается универсальность генетического кода (см. происхождение жизни).

Теория гена

Схематический вид ДНК, первичного генетического материала

Основная статья: Ген

Форма и функции биологических объектов воспроизводятся из поколения в поколение генами, которые являются элементарными единицами наследственности. Физиологическая адаптация к окружающей среде не может быть закодирована в генах и быть унаследованной в потомстве (см. Ламаркизм). Примечательно, что все существующие формы земной жизни, в том числе, бактерии, растения, животные и грибы, имеют одни и те же основные механизмы, предназначенные для копирования ДНК и синтеза белка. Например, бактерии, в которые вводят ДНК человека, способны синтезировать человеческие белки.

Совокупность генов организма или клетки называется генотипом. Гены хранятся в одной или нескольких хромосомах. Хромосома — длинная цепочка ДНК, на которой может быть множество генов. Если ген активен, то последовательность его ДНК копируется в последовательности РНК посредством транскрипции. Затем рибосома может использовать РНК, чтобы синтезировать последовательность белка, соответствующую коду РНК, в процессе, именуемом трансляция. Белки могут выполнять каталитическую (ферментативную) функцию, транспортную, рецепторную, защитную, структурную, двигательную функции.

Гомеостаз

Основная статья: Гомеостаз

Гомеостаз — способность открытых систем регулировать свою внутреннюю среду так, чтобы поддерживать её постоянство посредством множества корректирующих воздействий, направляемых регуляторными механизмами. Все живые существа, как многоклеточные, так и одноклеточные, способны поддерживать гомеостаз. На клеточном уровне, например, поддерживается постоянная кислотность внутренней среды (pH). На уровне организма у теплокровных животных поддерживается постоянная температура тела. В ассоциации с термином экосистема под гомеостазом понимают, в частности, поддержание растениями постоянной концентрации атмосферной двуокиси углерода на Земле.

Энергия

Основная статья: Биоэнергетика

Выживание любого организма зависит от постоянного притока энергии. Энергия черпается из веществ, которые служат пищей, и посредством специальных химических реакций используется для построения и поддержания структуры и функций клеток. В этом процессе молекулы пищи используются как для извлечения энергии, так и для синтеза биологических молекул собственного организма.

Первичным источником энергии для 99 % земных существ является световая энергия, главным образом солнечная (для 1 % — хемосинтез). Световая энергия посредством фотосинтеза превращается растениями в химическую (органические молекулы) в присутствии воды и некоторых минералов. Часть полученной энергии затрачивается на наращивание биомассы и поддержание жизни, другая часть теряется в виде тепла и отходов жизнедеятельности. Общие механизмы превращения химической энергии в полезную для поддержания жизни называются дыхание и метаболизм.

Уровни организации жизни

Основная статья: Уровни организации жизни

Шесть основных структурных уровней жизни:

  • Молекулярный
  • Клеточный
  • Организменный
  • Популяционно-видовой
  • Биогеоценотический
  • Биосферный

Биологические дисциплины

Акарология — Анатомия — Альгология — Антропология — Бактериология — Биогеография — Биогеоценология — Биотехнология — Биоинформатика — Биология океана — Биология развития — Биометрия — Бионика — Биосемиотика — Биоспелеология — Биофизика — Биохимия — Ботаника — Биомеханика — Биоценология — Биоэнергетика — Бриология — Вирусология — Генетика — Геоботаника — Герпетология — Гидробиология — Гистология — Дендрология — Зоология — Зоопсихология — Иммунология — Ихтиология — Колеоптерология — Космическая биология — Ксенобиология — Лепидоптерология — Лихенология — Микология — Микробиология — Мирмекология — Молекулярная биология — Морфология — Нейробиология — Палеонтология — Палинология — Паразитология — Радиобиология — Систематика — Системная биология — Синтетическая биология — Спонгиология — Таксономия — Теоретическая биология — Териология — Токсикология — Фенология — Физиология — Физиология ВНД — Физиология животных и человека — Физиология растений — Фитопатология — Цитология — Эволюционная биология — Эмбриология — Эндокринология — Энтомология — Этология

Биологическая литература

Первоисточниками информации по биологии являются научные журналы, списки которых предоставляет ряд учреждений, как российских, так и зарубежных:

и др.

Данные первоисточников обобщают авторы обзорных публикаций, которые могут представлять собой как журнальные статьи, так и монографии. На следующем уровне обобщения стоят учебники и справочные пособия.

Популяризация биологии

Биологическая безопасность

Основная статья: Биологическая безопасность

  1. ↑ Treviranus, Gottfried Reinhold, Biologie : oder Philosophie der lebenden Natur für Naturforscher und Aerzte, 1802
  2. ↑ 1 2 Avila, Vernon L. Biology: investigating life on earth. — Boston: Jones and Bartlett, 1995. — P. 11—18. — ISBN 0-86720-942-9
  3. ↑ Campbell Neil A. Biology: Exploring Life. — Boston, Massachusetts: Pearson Prentice Hall. — ISBN 0-13-250882-6
  4. ↑ King, TJ & Roberts, MBV Biology: A Functional Approach. — Thomas Nelson and Sons. — ISBN 978-0174480358
  5. ↑ Conway Zirkle (1941), Natural Selection before the «Origin of Species», Proceedings of the American Philosophical Society 84 (1): 71-123.
  6. ↑ D. Craig Brater and Walter J. Daly (2000), «Clinical pharmacology in the Middle Ages: Principles that presage the 21st century», Clinical Pharmacology & Therapeutics 67 (5), p. 447—450 [449].
  7. ↑ Islamic medicine, Hutchinson Encyclopedia.
  8. ↑ S. A. Al-Dabbagh (1978). «Ibn Al-Nafis and the pulmonary circulation», The Lancet 1, p. 1148.
  9. ↑ 1 2 Mayr, E The Growth of Biological Thought. — Belknap Press. — ISBN 978-0674364462
  10. ↑ Magner, LN A History of the Life Sciences. — TF-CRC. — ISBN 978-0824708245
  11. ↑ Futuyma, DJ Evolution. — Sinauer Associates. — ISBN 978-0878931873
  12. ↑ Coleman, W Biology in the Nineteenth Century: Problems of Form, Function and Transformation. — Cambridge University Press. — ISBN 978-0521292931
  13. ↑ Allen, GE Life Science in the Twentieth Century. — Cambridge University Press. — ISBN 978-0521292962
  14. ↑ Fruton, JS Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. — Yale University Press. — ISBN 978-0300076080
  15. ↑ Morange, M & Cobb, M A History of Molecular Biology. — Harvard University Press. — ISBN 978-0674001695
  16. ↑ Smocovitis, VB Unifying Biology. — Princeton University Press. — ISBN 978-0691033433
  17. ↑ Mazzarello, P (1999). «A unifying concept: the history of cell theory». Nature Cell Biology 1: E13–E15. DOI:10.1038/8964.
  18. ↑ Darwin, Charles (1859). On the Origin of Species, 1st, John Murray

  • Большой энциклопедический словарь. Биология. — М.: Большая Российская энциклопедия, 1999.
  • Биология // Биологический энциклопедический словарь — М.: Сов. Энциклопедия, 1986 г.

dic.academic.ru

Межклеточное вещество: строение и функции

Неотъемлемой часть любого живого организма, который только можно встретить на планете, является межклеточное вещество. Оно образовывается из известных нам компонентов – плазмы крови, лимфы, коллагеновых белковых волокон, эластина, матрикса и так далее. В любом организме клетки и межклеточное вещество неразрывно связаны между собой. И сейчас мы подробно рассмотрим состав этой субстанции, ее функции и особенности.

Общие данные

Итак, межклеточное вещество – это один из многочисленных видов соединительной ткани. Оно присутствует в различных частях нашего организма, и в зависимости от местонахождения меняется и его состав. Как правило, такая связующая субстанция выделяется опорно-трофическими тканями, которые отвечают за целостность работы всего организма. Состав межклеточного вещества можно также охарактеризовать в общем. Это плазма крови, лимфа, белковые, ретикулиновые и эластиновые волокна. В основе этой ткани лежит матрикс, который также называют аморфным веществом. В свою очередь матрикс состоит из очень сложного набора органических веществ, клетки которых по размерам крайне малы по сравнению с основными известными микроскопическими элементами организма.

Образуемое межклеточное вещество в тканях является результатом их деятельности. Именно поэтому его состав зависит от того, какую часть организма мы рассматриваем. Если говорить о зародыше, то в данном случае тип вещества будет единым. Тут оно появляется из углеводов, белков, липидов и эмбриальной соединительной ткани. В процессе роста организма более разнообразными по своим функциям и наполнению становятся и его клетки. Вследствие этого меняется и межклеточное вещество. Его можно встретить в эпителии и в недрах внутренних органов, в костях человека и в его хрящах. И в каждом случае мы найдем индивидуальный состав, определить принадлежность которого сможет лишь знающий биолог или медик.

Самое важное волокно организма

В организме человека межклеточное вещество соединительной ткани выполняет основную опорную функцию. Оно не отвечает за работу конкретного органа или системы, а поддерживает жизнедеятельность и взаимосвязь всех составляющих человека или животного, начиная от самых глубоких органов и заканчивая дермой. В среднем данный связующий компонент представляет собой от 60 до 90 процентов массы всего тела. Иными словами, данная субстанция в организме является опорным каркасом, который обеспечивает нам жизнедеятельность. Такое вещество делится на множество подвидов (см. ниже), структура которых схожа между собой, но не полностью идентична.

Само же межклеточное вещество соединительной ткани – это матрикс. Он выполняет транспортную функцию между различными системами в организме, служит ему опорой и при необходимости передает различные сигналы от одних органов к другим. Благодаря этому матриксу в человеке или в животном происходит обмен веществ, он участвует в локомоции клеток, а также является важной составляющей их массы. Также важно отметить, что в процессе эмбриогенеза многие клетки, которые ранее были самостоятельными или относились к определенной внутренней системе, становятся частью этой субстанции. Основными составляющими матрикса является гиалуроновая кислота, протеогликаны и гликопротеины. Одним из самых ярких представителей последних является коллаген. Этот компонент наполняет собой межклеточное вещество и встречается буквально в каждом, даже самом маленьком уголке нашего организма.

Внутреннее строение скелета

Сформировавшиеся кости нашего организма состоят полностью из клеток-остеоцитов. Они имеют заостренную форму, большое и твердое ядро и минимум цитоплазмы. Обмен веществ в таких «закаменевших» системах нашего тела производится благодаря костным канальцам, которые выполняют дренажную функцию. Само же межклеточное вещество костной ткани образуется лишь в период формирования кости. Этот процесс осуществляется благодаря клеткам-остебластам. Они, в свою очередь, после завершения формирования всех тканей и соединений в подобной структуре разрушаются и прекращают свое существование. Но на начальных этапах данные костные клетки выделяют межклеточное вещество посредством синтеза белка, углеводов и коллагена. После того как матрикс ткани сформирован, клетки начинают производить соли, которые превращаются в кальций. В данном процессе остеобласты как бы блокируют все обменные процессы, которые происходили внутри них, останавливаются и отмирают. Прочность скелета теперь поддерживается за счет того, что функционируют остеоциты. Если же случается какая-либо травма (перелом, к примеру), то остеобласты возобновляются и начинают вырабатывать межклеточное вещество костной ткани в больших количествах, что дает возможность организму справиться с недугом.

Особенности строения крови

Каждый прекрасно знает, в состав нашей красной жидкости входит такой компонент, как плазма. Она обеспечивает необходимую вязкость, возможность оседания крови и многое другое. Таким образом, межклеточное вещество крови – это и есть плазма. Макроскопически представляет она собою вязкую жидкость, которая либо прозрачная, либо имеет легкий желтоватый оттенок. Плазма всегда собирается в верхней части сосуда после осаждения других основных элементов крови. Процентное содержание такой межклеточной жидкости в крови – от 50 до 60%. Основу самой же плазмы составляет вода, в которой содержатся липиды, белки, глюкоза и гормоны. Также плазма впитывает в себя все продукты переработки обмена веществ, которые после утилизируются.

Виды белков, которые находятся в нашем организме

Как мы уже поняли, строение межклеточного вещества основывается на белках, которые являются конечным продуктом работы клеток. В свою очередь эти белки можно поделить на две категории: те, которые обладают адгезивными свойствами, и те, которые устраняют адгезию клеток. К первой группе главным образом мы относим фибронектин, который является основной матрикса. За ним следуют нидоген, ламинин, а также фибриллярные коллагены, которые образуют волокна. По этим канальцам транспортируются различные вещества, которые обеспечивают обмен веществ. Вторая группа белков – это антиадгезивные компоненты. В их состав входят различные гликопротеины. Среди них назовем тенасцин, остеонектин, тромпоспондин. Данные компоненты отвечают в первую очередь за заживление ран, повреждений. Они в большом количестве вырабатываются также во время инфекционных заболеваний.

Функциональность

Очевидно, что роль межклеточного вещества в любом живом организме весьма велика. Данная субстанция, состоящая преимущественно из белков, образуется даже между самыми твердыми клетками, которые находятся друг от друга на минимальном расстоянии (костная ткань). Благодаря своей гибкости и канальцам-проводникам в этой «полужидкости» происходит обмен веществ. Сюда могут выделяться продукты переработки основных клеток, или же поступать полезные компоненты и витамины, которые только что попали в организм с пищей или другим путем. Межклеточное вещество пронизывает наш организм полностью, начиная с кожи и заканчивая оболочкой клеток. Именно поэтому как западная медицина, так и восточная давно уже пришли к выводу о том, что все в нас взаимосвязано. И если повреждается один из внутренних органов, то это может оказать влияние на состояние кожи, волос, ногтей, или же наоборот.

Вечный двигатель

Присутствующее межклеточное вещество в тканях нашего организма буквально обеспечивает его жизнедеятельность. Оно делится на множество различных категорий, может иметь различную молекулярную структуру, а в некоторых случаях разнятся и функции вещества. Что же, рассмотрим, какие бывают типы такой соединительной материи и что характерно для каждого из них. Упустим мы тут, пожалуй, только плазму, так как ее функции и особенности мы уже достаточно изучили, и повторяться не станем.

Прослеживается между клетками, которые находятся на расстоянии от 15 до 20 нм друг от друга. Связующая ткань в таком случае свободно располагается в данном пространстве и не препятствует проходу полезных веществ и отходов работы клеток по своим канальцам. Одной из наиболее знаменитых разновидностей такой связи является «замок». В таком случае билипидные мембраны клеток, находящихся в пространстве, а также часть их цитоплазмы сдавливаются, образуя прочную механическую связь. По ней и проходят различные компоненты, витамины и минералы, которые обеспечивают работу организма.

Межклеточное плотное соединение

Наличие межклеточного вещества не всегда обозначает, что сами клетки находятся на огромном расстоянии друг от друга. В данном случае при подобном их сцеплении плотно сживаются мембраны всех составляющих отдельной системы организма. В отличие от предыдущего варианта - «замка», где клетки также соприкасаются, - тут подобные «влипания» препятствуют прохождению различных веществ по волокнам. Стоит отметить, что подобный тип межклеточного вещества наиболее надежно защищает организм от окружающей среды. Чаще всего столь плотное слияние клеточных мембран можно встретить в кожном покрове, а также в различных типах дермы, которая окутывает внутренние органы.

Третий типаж – десмосома

Данная субстанция представляет собой в своем роде липкую связь, которая образуется над поверхностью клеток. Это может быть небольшая площадка, диаметром не более 0,5 мкм, которая будет обеспечивать максимально эффективную механическую связь между мембранами. Благодаря тому, что десмосомы обладают липкой структурой, они весьма плотно и надежно склеивают между собой клетки. Вследствие этого обменные процессы в них происходят более эффективно и быстро, нежели в условиях простого межклеточного вещества. Такие липкие образования встречаются в межклеточных тканях любого типа, и все они связаны между собой волокнами. Их синхронная и последовательная работа позволяет организму как можно скорее реагировать на любые внешние поражения, а также перерабатывать сложные органические структуры и передавать их в нужные органы.

Клеточный нексус

Такой тип контакта между клетками еще называют щелевым. Суть заключается в том, что тут участие принимают только две клетки, которые плотно прилегают друг к другу, и при этом между ними находится множество белковых канальчиков. Обмен веществ происходит только между конкретными двумя составляющими. Между клетками, которые настолько близко расположены друг к другу, имеется межклеточное пространство, однако в данном случае оно практически бездейственно. Далее по цепной реакции, после обмена веществами между двумя составляющими, витамины и ионы передаются по белковым каналам дальше и дальше. Считается, что этот способ обмена веществ наиболее эффективный, и чем здоровее организм, тем лучше он развивается.

Как работает нервная система

Говоря об обмене веществ, транспорте витаминов и минералов по организму, мы упустили весьма важную систему, без которой не может функционировать ни единое живое существо – нервную. Нейроны, из которых она состоит, по сравнению с другими клетками нашего организма находятся друг от друга на очень большом расстоянии. Именно поэтому данное пространство заполнено межклеточным веществом, которое именуется синапсом. Данный тип соединительной ткани может находиться только между идентичными нервными клетками или же между нейроном и так называемой клеткой-мишенью, в которую должен поступить импульс. Характерной чертой работы синапса является то, что он передает сигнал только от одной клетки к другой, не распространяя его сразу на все нейроны. По такой цепочке информация доходит до своей «мишени» и извещает человека о боли, недомогании и т. д.

Краткое послесловие

Межклеточное вещество в тканях, как оказалось, играет крайне важную роль в развитии, формировании и дальнейшей жизнедеятельности каждого живого организма. Такое вещество составляет большую часть массы нашего тела, оно выполняет самую важную функцию – транспортную, и позволяет всем органам работать слаженно, дополняя друг друга. Межклеточное вещество способно самостоятельно восстанавливаться после различных повреждений, приводить весь организм в тонус и корректировать работу тех или иных поврежденных клеток. Эта субстанция делится на множество различных типов, она встречается как в скелете, так и в крови, и даже в нервных окончаниях живых существ. И во всех случаях она сигнализирует нам о том, что происходит с нами, дает возможность почувствовать боль, если работа определенного органа нарушена, или потребность в получении определенного элемента, когда его не хватает.

fb.ru

Межклеточное вещество

Межклеточное вещество – это одна из частей разнообразных видов соединительных тканей. В состав межклеточного вещества входят различные вещества: лимфа, плазма крови, ретикулиновые, эластиновые и коллагеновые белковые волокна, а также аморфное вещества, или матрикс, который состоит из набора сложных органических веществ.  Межклеточное вещество образуется клетками опорно-трофических тканей. Таким образом, оно выполняет питательную и опорную функции, объединяет клетки в ткань.

Межклеточное вещество является результатом деятельности тех тканей, между которыми оно образуется. Оно разрастается у зародыша из эмбриональной соединительной ткани, липидов, углеводов, белков. Иногда межклеточное вещество можно найти в эпителиальных тканях, в иных случаях оно составляет основную массу ткани.

При развитии некоторых болезней и патологических процессов проницаемость межклеточного вещества может изменяться. Некоторые изменения данного вещества, которые обеспечивают обменную и транспортную функцию, связаны с расстройством микроциркуляции. Нарушения лимфообращения и кровообращения на уровне микроциркуляции сопровождаются венозным застоем, начинает развиваться отек межклеточного вещества. Длительный отек приводит к увеличению количества коллагеновых волокон из-за повышения синтеза фибропластами. Резкое повышение микрососудистой проницаемости завершается кровоизлияниями в межклеточное вещество.

Нарушения обмена соединительной ткани приводят к накоплению в ней продуктов обмена веществ, они могут приноситься с лимфой и кровью, в результате какой-либо патологии. В межклеточных веществах могут накапливаться липиды, а именно холестерин. Появление пигментов  к межклеточном веществе является признаком различных патологических процессов и болезней местного и общего характера. Также в межклеточном веществе могут находить соли мочевой кислоты, что нередко встречается при подагре, а при кальцинозе могут находить соли кальция, что, естественно, не является нормой. Если из-за болезни происходит изменение межклеточного вещества, развиваются изменения в структуре ткани («высыхание», «затвердение», «обызвествление»). Количество межклеточного вещества в некоторой мере оказывает влияние и на процессы старения.

Особое значение данное вещество влияет на костную ткань. За счет скопления в межклеточном веществе минеральных компонентов кости приобретают прочность. Если происходит разрежение твердого костного вещества, размягчаются и сами кости, в результате чего скелет уже не может выдерживать всю нагрузку. Для хрящей данное вещество также важно, так именно за его счет хрящи обретают гибкость.

Межклеточное вещество тесно связано с протеканием воспалительной реакции, именно с этим веществом связано выделение в полости и ткани плазмы, происходит миграция клеток, образуется экссудат. В этом веществе образуются остатки веществ, участвующих в воспалительных процессах: возникают гранулемы при различных хронических (сифилис, лепра, туберкулез, бруцеллез) и острых (сыпной и брюшной тифы) инфекционных заболеваниях; там же развертываются аллергические реакции замедленного и немедленного типа. Кроме того, межклеточное вещество является обязательной составной частью многих опухолей.

Для диагностики межклеточного вещества используются такие методы как гистохимия, электронная и поляризационная микроскопия, иммунофлюорисценция, ауторадиография, рентгеноструктурный анализ.

medside.ru

Межклеточное вещество

Межклеточное Вещество

составная часть разл. разновидностей соединит, ткани животного организма. Представлено жидкостью (плазма крови, лимфа), волокнами (коллагеновые, эластические, ретикулярные) и основным веществом, или матрнксом, в к-ром преобладают мукополисахариды и глюкозаминогликаны — гиалуроновая к-та, хондроитинсерные к-ты и др. М. в. продуцируется фибробластами, хондробластами, остеобластами. Осн. функции М. в.- опорная и трофическая. Макромолекулы М. в. обеспечивают интеграцию клеток в тканях и органах.

Межклеточное Вещество`Ботанический словарь`

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО — вещество полисахаридной природы, находящееся между оболочками растительных клеток, посредством которого они склеиваются между собой, образуя ткани.

Словарь ботанических терминов. — Киев: Наукова Думка. Под общей редакцией д.б.н. И.А. Дудки. 1984.

Межклеточное вещество`Энциклопедия Брокгауза и Ефрона`

Межклеточное Вещество`Большой медицинский словарь`

Межклеточное Вещество

(substantia intercellularis, LNH; син. промежуточное вещество) неклеточная часть соединительной ткани, состоящая из волокнистых структур, окруженных аморфным основным веществом.

Межклеточное Вещество`Медицинский словарь`

(substantia intercellularis, LNH; син. промежуточное вещество) — неклеточная часть соединительной ткани, состоящая из волокнистых структур, окруженных аморфным основным веществом.

Межклеточное вещество`Медицинская эциклопедия`

Межклеточное вещество

неклеточная часть соединительной ткани, состоящая из волокнистых структур, окруженных аморфным основным веществом.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 ггМежклеточное вещество

вещество между клеточками данной ткани, являющееся результатом деятельности их; иногда оно может находиться в ткани в весьма малом количестве (эпителии), в других случаях составлят главную массу ткани (большая часть соединительных тканей) — см. Ткани.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон1890—1907

Главная / Лекции 1 курс / Гистология человека / Вопрос 9. Соединительные ткани / 4.

Первый компонент межклеточного вещества соединительной ткани

4. Первый компонент межклеточного вещества соединительной ткани

Первый компонент межклеточного вещества соединительной ткани состоит из двух структурных компонентов:

  • первый компонент — основное или аморфное вещество;

  • второй компонент — волокона.

Основное или аморфное вещество состоит из:

  • белков: — коллаген; — альбумины;

    -глобулины;

  • углеводов, которые представлены полимерными формами, в сновном гликозоаминогликанами: — сульфатированными: хондроитинсерными кислотами, дерматансульфатом, кератинсульфатом, гепаринсульфатом;

    — несульфатированными: гиалуроновой кислотой.

  • Углеводные компоненты, образуя длинные полимерные цепи, способны удерживать воду в различном количестве.

    Количество воды зависит от качества углеводного компонента. В зависимости от содержания воды аморфное вещество может быть более или менее плотным (в форме золя или геля), что определяет и функциональную роль данной разновидности соединительной ткани. Аморфное вещество обеспечивается транспорт веществ из соединительной ткани к эпителиальной ткани и обратно, в том числе транспорт веществ из крови к клеткам и обратно.

    Аморфное вещество образуется прежде всего за счет деятельности фибробластов (коллаген, гликозоаминогликаны), а также за счет веществ плазмы крови (альбумины, глобулины).

    Далее по теме:

    1. Дорога к бессмертию
    2. Бессмертие и религия
    3. Философия бессмертия
    4. Бессмертие и наука
    5. История анабиоза
    6. Смерть
    7. Кора головного мозга
    8. Бессмертие и анабиоз
    9. Анабиоз, медицина и биология
    10. Анабиоз и экономика
    11. Анабиоз и закон
    12. Анабиоз в Антарктиде
    13. Техническое обеспечение анабиоза
    14. Бессмертие и вера
    15. Библиотека Ordo Deus
    16. Контактная страница Ordo Deus

    Межклеточное вещество — составная часть соединительной ткани позвоночных и многих беспозвоночных животных, включающая соединительнотканные волокна и аморфное основное вещество, выполняющая механическую, опорную, защитную и трофическую функции.

    Межклеточное вещество образуется у зародыша из белков, углеводов, липидов, продуцируемых клетками эмбриональной соединительной ткани, начиная со стадии гаструлы.

    Гистогенез межклеточного вещества продолжается и в постэмбриональном периоде. Наибольшая роль в образовании межклеточного вещества принадлежит фибробластам, хондробластам, остеобластам. Полагают, что в образовании межклеточного вещества волокнистой соединительной ткани могут участвовать гистиоциты, лаброциты (тучные клетки) и другие.

    Соединительнотканные волокна межклеточного вещества могут быть представлены коллагеновыми, эластическими, ретикулярными, или ретикулиновыми (аргирофильными), и другими волокнами, от чего зависит прочность, эластичность и в определенной степени архитектоника соединительной ткани органов (дерма различных участков кожи, сухожилия, строма кроветворных органов и так далее).

    Аморфное основное вещество, окружающее соединительнотканные волокна и клетки соединительной ткани, состоит из высокополимерных соединений, от концентрации и состава которых в различных видах соединительной ткани зависят физические, химические и биологические свойства межклеточного вещества (вязкость, гидрофильность, интенсивность метаболических процессов, тургор и другие).

    Состав волокон и аморфного вещества неодинаков в различных видах соединительной ткани, в различных ее топографических участках межклеточное вещество может быть минерализованным.

    При этом кристаллы минералов (фосфорнокислый кальций, углекислый кальций и другие) импрегнируют органическую основу межклеточного вещества твердых скелетных тканей (дентин, кость). С возрастом межклеточное вещество претерпевает инволюционные изменения: меняется соотношение основного вещества и волокон — масса волокнистых структур коллагена и плотность его «упаковки» возрастают, а масса основного вещества уменьшается, происходят конденсация эластических волокон, глубокие физико-химические изменения межклеточного вещества.

    В эксперименте на животных выявлено, что недостаточное питание задерживает развитие возрастных изменений коллагена, а «атерогенная» диета вызывает его постарение.

    Характером строения межклеточного вещества в значительной мере определяются функциональными особенности тех или иных видов соединительной ткани.

    Чем плотнее межклеточное вещество, тем сильнее выражена механическая, опорная функция, которая достигает наибольшего развития в костной ткани. Трофическая функция, напротив, лучше обеспечивается полужидким по консистенции межклеточным веществом (интерстициальная соединительная ткань, окружающая кровеносные сосуды).

    Биохимия межклеточного вещества

    Коллагеновые и эластические волокна, входящие в состав межклеточного вещества, построены из склеропротеинов — коллагена и эластина. Из коллагена состоят и ретикулиновые волокна отличающиеся повышенным содержанием углеводов и наличием липидов.

    В эластических волокнах имеется микрофибриллярный компонент, отличный от эластина по аминокислотному составу. Этот же компонент образует особую разновидность немногочисленных, сходных с эластическими волокнами межклеточного веществ (окситалановых), волокон резистентных к действию эластазы.

    Свойства основного вещества определяются преимущественно углеводно-белковыми биополимерами — гликозаминогликанами и гликопротеидами. Наличие гликозаминогликанов придает основному веществу межклеточного вещества выраженную базофильность. Качественные и количественные соотношения этих биополимеров, отличающихся интенсивным метаболизмом, различны в разных видах соединительной ткани.

    Склеропротеины, гликозаминогликаны и гликопротеиды межклеточного вещества синтезируются соединительнотканными клетками, но заключительные этапы «сборки» макромолекул, их агрегатов, образование волокон, а также процессы катаболизма протекают в межклеточном веществе, в котором имеются необходимые для этого ферменты.

    При взаимодействии макромолекул межклеточного вещества происходит самосборка агрегатов возрастающей степени сложности. Вначале связываются гомотипические макромолекулы, затем происходит гетеротипическое взаимодействие — гликозаминогликаны соединяются с неколлагеновыми полипептидами, образуя протеогликаны и еще более сложные агрегаты, включающие гликопротеиды.

    На третичном уровне взаимодействия в состав агрегатов включаются волокна. Так создается упорядоченная супрамолекулярная структура межклеточного вещества, специфичная для каждого вида соединительной ткани, от которой зависят ее физиологические и биомеханические свойства.

    Коллагеновые волокна обеспечивают устойчивость к растяжению. Трехмерная сеть электростатически заряженных, связывающих большое количество воды агрегатов протеогликанов создает устойчивость к сжатию, особо выраженную у хрящевой ткани, избирательно задерживает катионы, создавая условия для минерализации кости, регулирует диффузию белковых молекул. Стабильность супрамолекулярной организации межклеточного вещества является важным фактором регуляции биосинтезирующей активности соединительнотканных клеток.

    Во взаимодействии между межклеточным веществом и клетками, а также клеток между собой большая роль принадлежит углеводсодержащему белку фибронектину, располагающемуся в зоне соприкосновения клеток и межклеточного вещества.

    Компоненты межклеточного вещества вызывают хемотаксис клеток и таким образом участвуют в процессах морфогенеза.

    Роль межклеточного вещества в патологии

    При развитии патологических процессов в организме физико-химические свойства межклеточного вещества, его проницаемость могут изменяться.

    Разнообразные изменения межклеточного вещества, обеспечивающего транспортно-обменную функцию, связаны прежде всего с расстройством микроциркуляции. При расстройствах крово- и лимфообращения на уровне микроциркуляторного русла, сопровождающихся венозным застоем и лимфостазом, развивается отек межклеточного вещества, что связано с повышением сосудистой проницаемости.

    При длительном отеке увеличивается количество коллагеновых волокон, что объясняется повышением синтеза коллагена фибробластами в условиях развивающейся гипоксии. Резкое повышение проницаемости микрососудов завершается диапедезными кровоизлияниями в межклеточное вещество.

    При нарушениях обмена соединительной ткани, то есть мезенхимальных дистрофиях, в межклеточном веществе накапливаются продукты метаболизма, которые могут приноситься с кровью и лимфой, быть результатом патологического синтеза или появляться в результате деструкции основного вещества и волокон соединительной ткани.

    Расстройства обмена белков и гликозаминогликанов межклеточного вещества ведут к развитию мукоидного и фибриноидного набухания с образованием фибриноида, что завершается гиалинозом.

    Эти виды мезенхимальных диспротеинозов рассматриваются как последовательные стадии дезорганизации соединительной ткани при коллагеновых болезнях. Расстройства обмена гликопротеидов межклеточного вещества приводят к слизистой дистрофии.

    Наследственные нарушения обмена гликозаминогликанов межклеточного вещества проявляются так называемыми болезнями накопления — мукополисахаридозами, в том числе гаргоилизмом. Наследственная несостоятельность основного вещества и волокнистых структур соединительной ткани лежит в основе болезни Марфана.

    Как в межклеточном веществе, так и в клетках соединительной ткани могут накапливаться липиды, особенно холестерин, что встречается при системных липидозах, в частности семейном гиперхолестеринемическом ксантоматозе.

    Появление в межклеточном веществе пигментов является признаком различных болезней и патологических процессов общего и местного характера. Так, общий гемосидероз, развивающийся при накоплении гемосидерина в клетках и межклеточном веществе, встречается при болезнях системы кроветворения (анемия, гемобластоз), интоксикациях гемолитическими ядами, некоторых инфекционных заболеваниях, переливаниях несовместимой крови, резус-конфликте и так далее, а местный гемосидероз — при кровоизлияниях, хроническом венозном застое в пределах органа, как это наблюдается, например, при буром уплотнении легких.

    Отложения порфиринов в межклеточном веществе скелетных тканей (кость, дентин) находят при врожденной порфирии, меланина — в дерме при аддисоновой болезни и пигментной ксеродерме.

    В межклеточном веществе могут выпадать соли мочевой кислоты, как это встречается при подагре; соли кальция в межклеточном веществе появляются при кальцинозе. В воспалительной реакции межклеточное вещество принимает непосредственное участие; с ним связана экссудация в ткани и полости тела плазмы, миграция клеток крови и образование экссудата.

    В межклеточном веществе может образоваться воспалительный инфильтрат, возникать гранулемы при острых (брюшной и сыпной тифы) и хронических (бруцеллез, туберкулез, лепра, сифилис) инфекционных заболеваниях; развертываться местные аллергические реакции как немедленного, так и замедленного типа. Межклеточное вещество — обязательный компонент многих опухолей; в опухолях мягких тканей, костей и одонтогенных оно может преобладать над клеточными элементами. Для выявления патологических изменений межклеточного вещества широко используются методы гистохимии, иммунофлюоресценции, поляризационной и электронной микроскопии, рентгеноструктурного анализа и ауторадиографии.

    Афанасьев, Ю.И. Серов, В.В. Слуцкий, Л.И.

    Все статьи в полном изложении, Вы можете найти в большой медицинской энциклопедии — Главный редактор: академик АН СССР (РАН) и АМН СССР (РАМН) Б.В.

    Петровский. — Москва издательство «Советская энциклопедия» 1989г.

    Внимание! Вы находитесь в библиотеке «Ordo Deus». Все книги в электронном варианте, содержащиеся в библиотеке «Ordo Deus», принадлежат их законным владельцам (авторам, переводчикам, издательствам).

    Все книги и статьи взяты из открытых источников и размещаются здесь только для чтения.

    Библиотека «Ordo Deus» не преследует никакой коммерческой выгоды.

    Все авторские права сохраняются за правообладателями.

    Если Вы являетесь автором данного документа и хотите дополнить его или изменить, уточнить реквизиты автора, опубликовать другие документы или возможно вы не желаете, чтобы какой-то из ваших материалов находился в библиотеке, пожалуйста, свяжитесь с нами по e-mail:info @ ordodeus. ru

    Формы для прямой связи с нами находятся в нижней части страниц: контакты и устав «Ordo Deus», для перехода на эти страницы воспользуйтесь кнопкой контакты вверху страницы или ссылкой в оглавлении сайта.

    Вас категорически не устраивает перспектива безвозвратно исчезнуть из этого мира? Вы желаете прожить ещё одну жизнь? Начать всё заново? Исправить ошибки этой жизни? Осуществить несбывшиеся мечты? Перейдите по ссылке: «главная страница».

    Строение клетки. Понятие о межклеточном веществе.

    Клетка- это основа строения жизнедеятельности организма; элементарно-структурная, функциональная и генетическая единица всех организмов.

    (рассмотрите картинку+ плюс определения всех подписей смотрите внизу)

    Микроворсинки — тонкие складки цитоплазматической мембраны, которые увеличивают поверхность клетки и принимают участие во взаимообмене веществ с окружающей средой.

    Клеточная, или цитоплазматическая, мембрана — полупроницаемая оболочка клетки, через которую осуществлюется взаимообмен структур клетки с внешней средой.

    Складчатый эндоплазматический ретикулум — система мембран и микроканалов, в которых размещаются рибосомы.

    Вакуоли — ограниченные мембраной полости, служащие для хранения питательных веществ и выделения секрета.

    Микрофиламенты — тонкие нити, состоящие из белка, связанные с внутренними протоками в клетке и ответственные за сокращения мышечных волокон.

    Гладкий эндоплазматический ретикулум — система мембран и канальцев, которая упрощает транспортировку веществ внутри клетки.

    Аппарат Гольджи — совокупность полостей и трубочек, основной задачей которых является преобразование, транспортировка и удаление химических веществ, необходимых для клеточной активности.

    Центриоли — трубчатые органеллы, принимающие участие в процессе деления клетки.

    Внутриклеточные нити — трубчатые волокна, формирующие тип внутренней формы клетки и отвечающие за ее форму.

    Лизосома — крошечная полость, содержащая ферменты и ответственная за расщепление питательных веществ и удаление ненужных клетке структур.

    Ядро — сферическое образование, содержащее генетический материал, ответственный за функционирование клетки и передачу наследственных признаков.

    Ядрышко — маленькое сферическое тельце в ядре клетки, которое посылает сигналы рибосомам в цитоплазме о необходимости выработки белков.

    Ядерная оболочка — оболочка ядра, отделяющая его от цитоплазмы.

    Митохондрия — органелла клетки, в которой происходит сжигание питательных веществ и выработка энергии.

    Цитоплазма — вещество желеобразной консистенции, заполняющее внутреннюю часть клетки, в котором содержатся питательные вещества, органеллы клетки и клеточное ядро.

    Рибосома — органелла в форме зерна, синтезирующая белки.

    Межклеточное вещество – это один из многочисленных видов соединительной ткани.

    Оно присутствует в различных частях нашего организма, и в зависимости от местонахождения меняется и его состав. Как правило, такая связующая субстанция выделяется опорно-трофическими тканями, которые отвечают за целостность работы всего организма.

    Состав межклеточного вещества можно также охарактеризовать в общем. Это плазма крови, лимфа, белковые, ретикулиновые и эластиновые волокна.

    Вопрос.

    Дата добавления: 2016-06-18; просмотров: 1499;

    Похожие статьи:

    Ответы (1)

    Прошу, переведите этот текст на русский язык очень грамотно. (Текст на французском языке) Очень нужно.

    Un autre groupe, formé dans la banlieue de Londres, se déchaîne sur scène, non pas pour qu’on l’aime, mais pour crier son agressivité, sa violence, son désir, sa révolte, son besoin de liberté. Ce sont les Rolling Stones: ils sont cinq. Derrière le fracas des instruments, guitare hurlante et batterie assourdissante, te chanteur, Mike Jagger, hurle sa rèbellion ou sa frustration «I can’t get no satisfaction» répète-t-il indéfiniment.

    Peu importe le texte, tout est dans le rythme et la passion. Mike Jagger chante comme les chanteurs de blues, avec encore plus de sensualité et de provocation que ne le faisait Elvis dix ans plus tôt.

    Là encore, folies, tournées, concerts du diable.

    Ответы (1)

    Проаналізуйте правову ситуацію

    Однокласникам Максимові Горобцю й Пилипу Тодиці

    (обом по 14 років) закортіло покататися на сусідській маши-

    ні. Пізно ввечері вони вийшли на подвір’я будинку, відкрили

    автомобіль, завели його саморобним ключем і рушили.

    Утім

    уже за 200 м машина заглухла. Почувши знайомий шум дви-

    гуна свого автомобіля, сусід хутко вискочив на подвір’я й

    схопив хлопців «на гарячому». Невдовзі вони мали неприєм-

    ну розмову з міліцейським патрулем.

    А Чи є у діяннях хлопців склад злочину? Якщо так, то на

    якій стадії він знаходився?

    Б Чи підлягають Максим Горобець і Пилип Тодика юридич-

    ній відповідальності? Якщо так, то поясніть, якій і чому

    ekoshka.ru

    Межклеточные соединения - это... Что такое Межклеточные соединения?

    Межклеточные соединения – соединения между клетками, образованные при помощи белков. Остальные виды взаимодействий клеток проходят посредством соединительной ткани.

    Межклеточные связи сводятся не только к электрическим взаимодействиям. Взаимосвязь между клетками является более сложной. Клетки органов и тканей вырабатывают ряд химических веществ, действующих на другие клетки и вызывающих включение/выключение (усиление/ослабление) функции механического сцепления между клетками, изменение интенсивности обмена веществ и процесса синтеза клеткой белков.

    Строение межклеточных соединений

    В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителий, мышечная ткань и пр.) между мембранами контактирующих клеток формируются связи – межклеточные контакты. В большинстве случаев межклеточные соединения разрушаются при удалении из среды ионов Ca2+.

    Функции межклеточных соединений

    Межклеточные соединения возникают в местах соприкосновения клеток в тканях и служат для межклеточного транспорта веществ и передачи сигналов (межклеточное взаимодействие), а также для механического скрепления клеток друг с другом.

    Типы межклеточных соединений

    Плазмодесмы

    Микроскопические цитоплазматические мостики, соединяющие соседние клетки растений. Основная статья: Плазмодесмы

    Простое межклеточное соединение

    При простом межклеточном соединении оболочки клеток сближены на расстояние 15 – 20 нм. Это соединение занимает наиболее обширные участки соприкасающихся клеток. Посредством простых соединений осуществляется слабая механическая связь, не препятствующая транспорту веществ в межклеточных пространствах. Разновидностью простого соединения является контакт типа «замок», когда билипидные мембраны соседних клеток вместе с участком цитоплазмы вдавливаются друг в друга, чем достигается большая поверхность соприкосновения и более прочная механическая связь.

    Плотное соединение (запирающая зона)

    В плотном соединении клеточные мембраны максимально сближены, здесь фактически происходит их слияние. Роль плотного соединения заключается в механическом сцеплении клеток и препятствии транспорту веществ по межклеточным пространствам. Эта область непроницаема для макромолекул и ионов, она ограждает межклеточные щели от внешней среды. Плотные соединения обычно образуются между эпителиальными клетками в тех органах (желудке, кишечнике и пр.), где эпителий ограничивает содержимое этих органов (желудочный сок, кишечный сок). В этих участках плотные контакты охватывают по периметру каждую клетку, межмембранные пространства отсутствуют, а соседние клеточные оболочки слиты в одну. Если же плотное сцепление происходит на ограниченном участке, то образуется пятно слипания (десмосома).Частными случаями плотного соединения являются зоны замыкания и слипания.

    Зона замыкания

    В зоне замыкания две соседние мембраны сливаются своими наружными слоями, эта зона непроницаема для макромолекул и ионов.

    Зона слипания (промежуточный контакт)

    В зоне слипания мембраны разделены щелью в 10-20 нм, заполненной плотным веществом (белковой природы).

    Десмосома (пятно сцепления, липкое соединение)

    Основная статья: Десмосомы

    Десмосома представляет собой небольшую площадку, иногда слоистого вида, диаметром до 0,5 мкм. Их функциональная роль заключается главным образом в механической связи между клетками. Существуют 3 типа десмосом – точечные, опоясывающие и полудесмосомы. Десмосомой называется образованное клетками соединение, прочно склеивающее клетки. Если они образуются между клетками и внеклеточным матриксом, то они называются полудесмосомами. Количество десмосом на одной клетке может достигать 2000. Такие контакты встречаются между клетками, которые могут подвергаться трению и другим механическим воздействиям (эпителиальные клетки, клетки сердечной мышцы). Со стороны цитоплазмы к десмосомам прикрепляются промежуточные филаменты, которые формируют остов цитоплазмы, обладающий большой прочностью на разрыв. Таким образом, через десмосомы промежуточные филаменты соседних клеток объединяются в непрерывную сеть по всей ткани. Тип промежуточных филаментов зависит от типа клеток: в большинстве эпителиальных клеток они кератиновые, а в клетках сердечной мышцы – десминовые.

    Нексус (щелевой контакт)

    Нексус представляет собой ограниченный участок контакта двух клеточных мембран диаметром 0,5 – 3 мкм с расстоянием между мембранами 2-3 нм. Обе эти мембраны пронизаны белковыми молекулами коннексонами, содержащими гидрофильные каналы. Через эти каналы осуществляется обмен ионами и микромолекулами соседних клеток. Поэтому нексусы называют также проводящими соединениями. Их функциональная роль заключается в переносе ионов и мелких молекул от клетки к клетке, минуя межклеточное пространство. Этот тип соединения встречается во всех группах тканей.

    Синапс (синаптическое соединение)

    Основная статья:Синапс

    Синапсы являются особыми формами межклеточных соединений. Они характерны для нервной ткани и встречаются между нейронами (межнейронные синапсы) или между нейроном и клеткой-мишенью (нервно-мышечные синапсы и пр.). Синапсы – участки контакта двух клеток, специализированных для односторонней передачи возбуждения или торможения от одной клетки к другой. Их функция – именно передача нервного импульса с нейрона на другую нервную клетку или клетку-мишень.

    См.также

    • Десмосомы
    • Плазмодесмы
    • Синапс

    Ссылки

    Wikimedia Foundation. 2010.

    dic.academic.ru


    Смотрите также