Функции периферической нервной системы


Строение периферической нервной системы и её функции

Характерным отличием периферической нервной системы является отсутствие особой защитной программы, которая присуща для головного, а также спинного мозга. Именно поэтому ее компоненты – нервные окончания, узлы, волокно в целом чаще подвержены воздействию негативных внешних и внутренних факторов. Из-за этой особенности периферической системы нервов они чаще проявляют себя различными заболеваниями – функциональными расстройствами. Лечением подобных патологий занимается невропатолог.

Структура и состав

Компоненты периферической нервной системы образованы ганглиями и черепными/спинальными нервами, а также сплетениями. Все они располагаются свободно в организме людей – без защиты плотными тканями либо водными средами.

На вопрос, какие структуры относят к периферической нервной системе у человека, специалисты традиционно отвечают – волокна соматических и вегетативных нервов, а также их корешковые представительства в центральном отделе мозга – ганглии.

Так, симпатическая система несет ответственность за сбор полной информации от органов чувств с тем, чтобы позже передать ее в головной мозг. После ее обработки, импульсы идут в обратном порядке – к двигательным структурам. Это, по сути, и есть инструмент взаимодействия человека с окружающим пространством.

Тогда как вегетативная нерва система составляет картину того, что происходит на периферии и во внутренних органах. Она контролирует деятельность сердечнососудистой, дыхательной, пищеварительной, а также выделительной системы. Особенностью этой функции периферической системы нервного контроля – ее бессознательность. Человек даже не прилагает никаких усилий. Все происходит автономно и автоматически – закладка происходит эмбриональным формированием органов и систем.

Вкратце можно представить себе, что орган чувств – зрение, получил информацию об опасности, передал ее в головной мозг. Оттуда импульс через отростки периферических нервов переместился в мышечные волокна конечностей. Человек сменил положение тела и избежал опасной ситуации.

Основные характеристики

Преимуществом, а в ряде случаев, недостатком вегетативной части нервной системы специалисты указывают тот факт, что расположение большинства важных ядер вынесено за пределы черепной коробки. Вставочные нейроны находятся для симпатического отдела в превертебральных ганглиях, тогда как для парасимпатического – в паравертебральных ганглиях, а также вблизи иннервируемых структур.

Поэтому к периферической нервной системе относятся сразу несколько центров контроля проведения импульса – и в ганглиях, на периферии, и в центральной области – головном мозге. Тогда как волокна, из которых сформированы периферические нервы, разделяют на два подгруппы:

  • центростремительные – способны передавать импульсы к структурам коры мозга от органов;
  • центробежные – отвечают за доведение импульса от мозга к иннервируемому органу;
  • трофические – обеспечение обменных тканевых процессов.

В корешках со спинномозговым ганглием, как правило, и происходит соединение двигательного и чувствительного нервного волокна. Еще одна особенность – крупные нервы проходят вблизи суставных сгибов, а сосудисто-нервными пучками, объединенными общей оболочкой, снабжены практически все важные для человека органы.

Функции

Поскольку периферическая система иннервации имеет в своем составе 31 пару нервов, которые исходят от спинного мозга, а также 12 пар черепно-мозговых отведений, то функциональные обязанности системы предусматривают:

  • координация движений человека в пространстве;
  • сенсорное определение мира – зрительное восприятие, тактильные ощущения, а также распознавание вкуса, запаха;
  • реагирование на надвигающуюся опасность – изменение пульса, давления, выработка гормонов стресса;
  • функционирование каждой клеточки тканей и органов;
  • адекватная деятельность мочеполовой, сердечнососудистой, дыхательной, двигательной системы;
  • полноценный отдых – расслабление, расширение кровеносных сосудов, зрачков, глубокое дыхание.

Люди в большинстве своем даже не осознают, насколько сложно устроен их организм, как в нем все взаимосвязано и функционирует. На каждое внешнее либо внутреннее раздражение незамедлительно следует ответ – изменилась температура в комнате, организм скорректировал деятельность покровных тканей, слизистых, а также центра терморегуляции. Или же при поступлении обильной пищи желудок дает информацию в головной мозг, а оттуда поступает сигнал к пищеварительным органам об усилении выработки ферментов и соков для полноценного усвоения.

Нарушение работы системы

Отсутствие естественной защиты нервного волокна – костями, мышцами, жидкой средой, делает его восприимчивым к различным негативным воздействиям. Основные заболевания, которые возникают в периферической системе:

  • невралгии – воспалительный очаг в клетках, но без их разрушения либо гибели;
  • невриты – тяжелые воспаления, или следствие травм, при которых структура ткани разрушается.

По расположению патологического очага – уровень поражения периферических нервов, принято выделять:

  • мононеврит – воспаление одной веточки нерва;
  • полиневрит – поражение сразу нескольких нервных волокон;
  • мультиневрит – патология затрагивает практически все нервы;
  • плексит – воспалительный процесс в нервном сплетении;
  • фуникулит – заболевание нервных канатиков;
  • радикулит – поражение воспалением корешков периферических нервов, при которых наблюдается нарушение чувствительности и двигательной активности человека.

По этиологическому фактору все невриты специалисты классифицируют на инфекционные – из-за активности болезнетворных микроорганизмов, травматические, а также токсические и дисметаболические. Полноценный диагноз врач выставит после оценки всей информации – неврологического осмотра, лабораторно-инструментальных исследований.

Диагностика

Сложность строения и особенности функционирования периферических нервных волокон и их центров определяют свои особенности диагностирования заболеваний. Огромную роль играет профессионализм врача – далеко не каждый сможет на основании жалоб больного предположить расстройство именно в отдаленном участке вегетативного сплетения. К примеру, задние ветви делятся на медиальные, а также латеральные – каждые иннервируют свой участок тела, что и определит локализацию неприятных ощущений у больного.

Распознать, что поражена периферическая нервная система специалистам помогают современные диагностические процедуры:

  • электронейромиография – графическая регистрация проведения импульса по нервному волокну;
  • иммунологические тесты и ПЦР диагностика ликвора – выявление возбудителя инфекционных заболеваний;
  • рентгенография позвоночника – травмы, переломы, дегенеративные процессы в позвонках;
  • компьютерная/ магнитно-резонансная томография головного, спинного мозга, внутренних органов – максимальная информация об объемных образованиях, кровоизлияниях, ущемлениях и воспалениях иной этиологии в нервных структурах.

В ряде случаев требуется консультация врачей смежных специальностей – онкологов, инфекционистов, ревматологов эндокринологов, поскольку симптомы поражения периферических нервов имеют сходство с течением заболеваний внутренних органов.

Медикаментозная терапия

Ориентируясь на строение периферических нервов и информацию от диагностических обследований. Врач в индивидуальном порядке подбирает оптимальную схему лечения. Основной упор приходится на устранение причины расстройства – ущемление в позвонковых структурах, опухолевый процесс, либо воспаление из-за проникновения инфекции.

Универсальной схемы медикаментозного воздействия на периферические нервы не существует. С помощью аптечных препаратов специалисты оказывают симптоматическое воздействие – устранить боль, купировать мышечный спазм, уменьшить воспаление в тканях, улучшить проводимость импульсов по волокну нерва.

В случае диагностирования инфекционного процесса врач подберет антибактериальные препараты – как правило, из подгрупп второго-третьего поколения, с широким спектром активности. Их наименование, дозы, курс лечения напрямую зависят от выявленного болезнетворного микроорганизма.

При тяжелом характере травм периферических нервов либо, если негативное воздействие обусловлено опухолью, специалисты принимают решение об оперативном вмешательстве. В последующем медикаменты назначают в период реабилитации для восстановления функциональной активности нервной системы.

Немедикаментозная система

Помимо синтетических лекарственных препаратов, в арсенале врачей для помощи больным с поражением периферических нервов имеются и иные методы лечения. Многие тонкие коллагеновые волокна образуют тонкую сеть непосредственно под покровными тканями, иннервируя их и регулируя деятельность.

С целью нелекарственного воздействия врачи активно прибегают к помощи физиопроцедур. Отлично зарекомендовали себя ультразвук и магнитотерапия, электрофорез и дарсонвализация. В каждой поликлинике аппараты для физиолечения представлены в широком ассортименте. Грамотное их применение значительно улучшает самочувствие людей, не требуя при этом даже приема медикаментов в легких случаях вегетативных расстройств.

Разные варианты медицинского массажа – вакуумный, точечный, баночный, также способны восстановить нервную проводимость на периферии. Оптимальный вариант и количество сеансов массажа врач определит в индивидуальном порядке. В дополнение обязательно назначают лечебную физкультуру. Комплекс упражнений подбирают под выявленное заболевание. Задачи ЛФК – стимулирование кровообращения, улучшение питания тканей, растягивание спазмированных мышц, восстановление полноценности движений в суставах.

Санаторно-курортное лечение – это еще один способ поправить здоровье при расстройствах в периферической нервной системе. Климатотерапия и диетотерапия, гидротерапия и прием отваров и настоев целебных трав, грязелечение и ингаляции позволят при грамотном их комбинировании позволят устранить различные проблемы с иннервацией органов и систем.

nerv-info.ru

Периферическая нервная система человека: функции и строение

Содержание

Рассказать ВКонтакте Поделиться в Одноклассниках Поделиться в Facebook

ЦНС – это головной и спинной мозг, которые отвечают за правильное функционирование организма. Для этого существует периферическая нервная система, состоящая из нервов, рецепторов, узлов, чувствительных клеток, передающих сигналы от всего организма центральной НС. Многие заболевания: от радикулита до вертеброгенных поражений связаны конкретно с поражением ПНС, которая не имеет собственных защитных механизмов или гематоэнцефалического барьера.

Что такое периферическая нервная система

В структуру периферической нервной системы входят нервные окончания, ганглии (локализированные пучки нейронов во всех частях организма), органы чувств, нервы, нервные узлы. Сама ПНС условно разделена на несколько подсистем, которые в комплексе своих действий передают информацию об окружающем мире, состоянии организма в мозг.

Фактически, нервная периферическая система отвечает за взаимодействие с внешним миром, передачу информации в мозг, адекватное функционирование внутренних органов, правильную реакцию на внешние раздражители после получения ответного сигнала от мозга (например, выброс адреналина в момент опасности). В отличие от ЦНС данная часть ничем не защищена и подвержена большому количеству опасностей.

Классификация

Периферический отдел нервной системы принято разделять на несколько подсистем в зависимости от направления ее действия (внешний или внутренний мир), места сообщения с ЦНС, временного момента работы. Однако, они настолько тесно взаимодействуют, что часто тяжело отнести какой-то процесс к отдельной системе. Медицинское разделение частей нервной периферической системы по основным типам функционирования:

  1. Соматическая. Система обеспечивает самостоятельное функционирование организма в окружающем мире, передвижение, управление мышцами. Сюда же относятся органы чувств как способ восприятия окружения, полноценного взаимодействия с ним.
  2. Вегетативная (висцеральная). Эта часть нервной периферической системы отвечает за внутренние органы, железы, сосуды и частично за некоторые мышцы.

Вегетативную систему принято также разделять по частям головного и спинного мозга, центрам которых соответствуют нервные окончания, и периодам функционирования:

  • симпатическая система: отвечает за пульс, моторику желудка, дыхание, кровяное давление, работу мелких бронхов, расширение зрачка и т.д. обслуживается симпатическими волокнами, начинающимися в боковых рогах спинного мозга, активируется в момент стресса;
  • парасимпатическая система: функционально противопоставлена предыдущей, к примеру, отвечает за сужение зрачка (большинство органов получают оба сигнала от обеих частей нервной периферической системы), сигналы получает от центров в крестцовом отделе спинного мозга и стволе головного, работает в момент покоя человека.

Функции

Нервная периферическая система представляет собой парные нервы трех ключевых групп: черепные, спинномозговые, периферические. Они отвечают за передачу импульсов, команд телу, органам от мозга и обратной связи его с внешним миром. Каждая группа окончаний отвечает за конкретные функции, поэтому их повреждение влечет к потере той или иной способности или ее модификации. Вот только некоторые жизненно важные процессы, которые контролирует ПНС:

  • выработка гормонов, ответственных за психологические реакции (волнение, радость, страх);
  • сенсорное определение мира (зрительное восприятие, тактильные ощущения, вкус, запах);
  • отвечает за функционирование слизистых покровов;
  • координация в пространстве (вестибулярный аппарат);
  • отвечает за функционирование мочеполовой, кровеносной системы, кишечника;
  • выработка пептидов, нейропептидов;
  • сокращение сухожилий;
  • отвечает за регулирование частоты сердцебиения и многие другие.

Периферические нервы

Это группа пучков смешанной функциональности. В отличие от других элементов нервной периферической системы эти нервы сформированы в мощные каналы, изолированные соединительной тканью. Из-за этой особенности они гораздо более устойчивы к повреждениям, но их травмирование несет большие проблемы для систем организма. Периферические нервные пучки разделены на три группы по месту крепления к поясничному столбу:

  • плечевая;
  • поясничная;
  • крестцовая.

Спинные нервы шейного отдела

ПНС представляет собой парные нервы в количестве 12 пар, которые отвечают за передачу импульсов, команд телу, органам от мозга и обратной связи с внешним миром. Каждая группа нервных окончаний отвечает за конкретные функции, поэтому их повреждение влечет к потере той или иной способности или ее модификации. 12 пар мозговых (черепных) нервов ПНС:

  1. Обонятельный.
  2. Зрительный (отвечает за зрачковую реакцию).
  3. Глазодвигательный.
  4. Блоковый (отвечает за контроль движения глаз).
  5. Троичный – передает сигналы от лица, контролирует процесс жевания.
  6. Отводящий (принимает участие в движении глаз).
  7. Лицевой – управляет движением мышц лица,отвечает за восприятие вкуса.
  8. Преддверно-улитковый. Отвечает за передачу слуховых импульсов, чувство равновесия.
  9. Языкоглоточный.
  10. Блуждающий – отвечает за контроль мышц глотки, гортани, органов в груди, брюшине.
  11. Спинной – отвечает за работу мышц шеи, плеч.
  12. Подъязычный.

Плечевое нервное сплетение

Это комплекс из 4-8 шейного и 1-2 спинномозговых нервов, которые отвечают за иннервацию кожи рук и функционирование мышц. Само сплетение локализировано в двух областях: в подмышечной ямке и боковом треугольнике шеи. Короткие и длинные ветви нервов состоят из каналов, каждый из которых отвечает за отдельную мышцу и нервное восприятие кожи, мышц и костей.

Нейромедиаторы

Считалось, что обмен сигналами между нервными окончаниями, ЦНС, нервной периферической системой происходит посредством электрических сигналов. Но исследования показали, что их недостаточно, и были выявлены химические вещества – нейромедиаторы. Их назначение – усиление связей между нейронами и их модификация. Количество нейромедиаторов до конца еще не определено. Вот некоторые из известных:

  • глутамат;
  • ГАМК (гамма-аминомасляная кислота);
  • адреналин;
  • дофамин;
  • норадреналин;
  • серотонин;
  • мелатонин;
  • эндорфины.

Заболевания периферической нервной системы

ПНС настолько обширна и выполняет такое количество функций, что вариантов ее повреждения великое множество. При этом следует помнить, что данная система практически ничем не защищена, кроме собственного строения и окружающих тканей. ЦНС имеет свои защитные и компенсирующие механизмы, а нервная периферическая система подвержена механическим, инфекционным, токсическим воздействиям. Болезни периферической нервной системы:

  • вертеброгенные поражения: рефлекторные синдромы, цервикалгия, цервикокраниалгия, цервикобрахиалгия, корешковые синдромы, радикулит корешков, радикулоишемия, торакалгия, люмбалгия, люмбаго, амиотрофия, фуникулиты, плексит;
  • поражения, воспаления нервных корешков, сплетений, узлов: менингорадикулиты, плекситы, травмы сплетений, ганглиониты, трунциты;
  • множественные поражения, воспаления корешков: полиневритический синдром, васкулит, полирадикулоневриты (Гийена-Барре и др.), токсические, хронические интоксикации (причины - алкоголизм, отравление на производстве токсинами, диабет и тд.), медикаментозные, токсикоинфекционные (ботулизм, дифтерия, воздействие вирусов или инфекций), аллергические, дисциркуляторные, идиопатические;
  • травматические синдромы (канала Гиена, туннельный, мононевриты, полиневриты, мультиневриты, кубитального канала и др.);
  • поражения черепных нервов: невриты, прозопалгии (монотипы и сочетания), ганглиониты, воспаления нервных узлов.

Лечение

Из-за сложности ПНС и большого количества заболеваний, связанных с ней, реальное лечение периферической нервной системы подразумевает комплексный подход. При этом важно помнить, что устранение конкретной болезни требует индивидуальной системы медикаментозных, оперативных, физиотерапевтических вмешательств. Это означает, что нет универсального подхода к ликвидации заболевания, но можно использовать простые превентивные меры, которые предупредят появление проблем (здоровый образ жизни, правильное питание, полноценные регулярные физические нагрузки).

Медикаментозное

Лекарственное воздействие на проблемные участки ПНС направлено на купирование симптоматики, болевых синдромов (негормональные противовоспалительные средства, в редких случаях мощные анальгетики, медикаментозные наркотики), улучшение проводимости тканей с помощью витаминотерапии, замедление распространения нарушений. Для восстановления полноценной функциональности при проблемах с мышечным тонусом используются лекарства, провоцирующие активность нервных связей.

Физиопроцедуры

Данный метод подразумевает нелекарственное воздействие на пораженные участки организма. Зачастую несерьезные заболевания, связанные с малоподвижным образом жизни, можно вылечить, используя только физиотерапию без использования препаратов. Современный спектр воздействия на организм обширен и включает в себя технологические способы и мануальную терапию:

  • ультразвук;
  • магнитолазерная терапия;
  • электрофорез;
  • дарсонвализация;
  • разные типы массажа.

ЛФК

Лечебная физкультура подразумевает растормаживание угнетенных нервов и прилежащих к ним участков. Комплекс упражнений подбирается под конкретное заболевание. Важно правильно выявить проблему, потому что неверно выбранный курс может усугубить проблему вместо ее терапии. Лечебная физкультура категорически противопоказана при общем тяжелом состоянии пациента, при сильном боевом синдроме. Основные задачи ЛФК при травмах и заболеваниях:

  • стимуляция кровообращения для предупреждения сращений, дегенеративных изменений в тканях;
  • борьба с развитием ограничения подвижности суставов, позвоночного столба;
  • общеукрепляющее воздействие на организм в целом.

Массаж

Данный метод лечения эффективно борется с заболеваниями нервной периферической системы вне зависимости от локализации. Главное требование – высококлассный специалист. При проблемах с нервами неправильная мануальная терапия может радикально ухудшиться состояние пациента вплоть до невозвратных последствий. Поэтому даже при незначительных дисфункциях нервных связях (онемение кожных покровов, ухудшение подвижностей суставов, потеря чувствительности кожи, болевые синдромы) следует обращаться к врачу, следовать его рекомендациям без самодеятельности.

Санаторно-курортное лечение

Такой способ лечения нервной периферической системы можно назвать идеальным, потому что на период реабилитации пациент покидает рабочую среду, постоянно находится под контролем специалистов. Различные лечебные санатории специализируются по разным заболеваниям ПНС. Объединяет их комплексное воздействие медикаментами, ЛФК, климатотерапией, правильным питанием, специфическими процедурами, направленными на конкретную проблему (грязелечение, лечебные ванны, ингаляции).

Видео

Лекция № 10. Периферическая нервная система. Лекция по гистологии.

Внимание! Информация, представленная в статье, носит ознакомительный характер. Материалы статьи не призывают к самостоятельному лечению. Только квалифицированный врач может поставить диагноз и дать рекомендации по лечению, исходя из индивидуальных особенностей конкретного пациента.

Нашли в тексте ошибку? Выделите её, нажмите Ctrl + Enter и мы всё исправим!

sovets.net

Работа периферической нервной системы

Основным инструментом, который отвечает за сознание и чувства человека, является нервная система. Она регулирует всю высшую нервную деятельность человека и, в свою очередь, условно подразделяется на два отдела: центральная нервная система и периферическая. Каждая имеет свое строение и выполняет свои определенные функции. Разберем, что такое периферическая нервная система.

Общие сведения

ПНС — часть нервной системы организма, вынесенная за пределы головного и спинного мозга, и состоящая из нервных клеток, распределенных по периферии тела (отсюда и название): на коже, в органах чувств, слизистых оболочках и внутренних тканях. Эта структура отвечает за сбор информации, поступающей из внутренней и внешней среды, и передачу  этой информации в центральные отделы нервной системы.

Если представить, что наш организм — это некое здание, то ПНС — это его система видеонаблюдения. Ее нейроны получают и фиксируют информацию обо всем, что происходит внутри и за пределами здания (организма), и передают эту информацию в режиме реального времени  в центральный аппарат (головной мозг), где она обрабатывается и на ее основе регулируются значимые параметры среды (выстраивается наиболее оптимальная стратегия поведения).

Как датчики «умного» дома сами отслеживают влажность, температуру воздуха в помещении и изменяют в соответствии с этим работу климат-системы, оповещают об отсутствии каких-либо продуктов на основе информации из холодильника и т.п., так и ПНС постоянно сканирует состояние внешней и внутренней среды и передает эти данные в ЦНС, чтобы мозг смог выстроить модель поведения, наиболее точно подходящую для текущей ситуации.

Состав периферической нервной системы

Наблюдается разделение структуры на соматическую и вегетативную. Соматическая регулирует работу органов чувств и согласованную деятельность двигательного аппарата, обеспечивая тем самым точность реагирования и возможность передвижения. Морфологически она представлена двигательными нервами, которые соединяют ЦНС с мышцами и органами чувств.

Вегетативная ПНС отвечает за функционирование внутренних органов, желез внутренней секреции, сосудов и некоторых групп мышц. В нее входят нейроны, идущие от ЦНС к внутренним системам организма. В зависимости от того, какие нервные волокна участвуют в построении реакции ЦНС в ответ на какое-либо воздействие, можно выделить симпатическую и парасимпатическую вегетативную систему. Симпатическая представлена нейронами, участвующими в регуляции пульса, дыхания, сокращения желудка, и активируется в основном в состоянии стресса (бодрствования), отвечая за мобилизацию всего организма. Парасимпатическая вегетативная система работает, напротив, в состоянии отдыха и регулируется теми нейронами, которые обеспечивают, например, расслабление мускулатуры, сужение зрачка, замедление дыхания и т.п. и служит накоплению энергии и процессам регенерации. Таким образом, оба отдела вегетативной ПНС работают поочередно и циклично.

Основные функции

Периферическая система обеспечивает бессознательные процессы в организме, связанные, прежде всего, с физиологическими состояниями и потребностями. Наиболее важными функциями выступают:

  1. Обеспечение восприятия окружающего мира (работа органов чувств, а именно их рецепторов: сетчатки глаза, вкусовых сосочков языка, обонятельных нервов слизистой оболочки носа, кожных и слуховых рецепторов).
  2. Выработка гормонов, регулирующих физическое и психическое состояние организма. За счет этого возможно оперативное реагирование на изменяющуюся ситуацию и мобилизация всех сил организма.
  3. Обеспечение координации тела в пространстве за счет «мышечного чувства». Оно по большей части бессознательно (мы не отдаем себе отчета в том, как растягиваются и сокращаются наши мышцы, связки и сухожилия во время бега или ходьбы), но именно благодаря этому чувству мы можем осуществлять двигательную активность. Как только оно утрачивается (например, в результате травмы спинного мозга), мы не можем более регулировать движения своих конечностей.
  4. Обеспечение функционирования мочевыделительной, сердечно-сосудистой, кровеносной, дыхательной систем организма. Все эти системы работают без нашего сознательного регулирования, и в обычном здоровом состоянии мы не задумываемся, как у нас все работает: как качают кровь сосуды, как обогащаются кислородом легкие, как сокращаются стенки кишечника и т.п. Но стоит только нашей ПНС дать сбой, как такие естественные и незаметные вещи становятся очень ощутимыми. При постановке загадочного диагноза «Вегето-сосудистая дистония» больной жалуется на такие распространенные симптомы, как: одышка, ощущение нехватки кислорода, слабость в мышцах, дрожь в конечностях, потливость, учащенное или замедленное сердцебиение и т.п.

Характерные особенности

В отличие от ЦНС периферическая система, в силу того, что она расположена вне скелета и не защищена гематоэнцефалическим барьером, является более уязвимой и может быть повреждена в результате травматизации или интоксикации. Так, при ожоге высокой степени могут отмереть определенные ткани, в которых находились периферические нервы,  результате чего обожженная часть тела утрачивает чувствительность и даже некоторые моторные функции.

Особенности ПНС заключаются в ее анатомо-физиологическом строении. Поскольку она представлена в основном нервными волокнами, возможность передачи импульсов в/из ЦНС обеспечивается проводимостью нейронов.

Так, миелиновые нервные волокна, входящие в основном в состав соматической ПНС, проводят импульсы со скоростью до 50 м/с. Этим объясняется высокая скорость моторной реакции, когда, например, наш глаз моментально закрывается, если в него попадает инородное тело. Безмиелиновые волокна и волокна с тонкой миелиновой оболочкой, из которых по большей  части состоит вегетативная система, проводят импульсы с гораздо меньшей скоростью: 1-10 м/с. Они отвечают за различные виды сенсорной чувствительности (температурная, вкусовая, вибрационная).

Нервные волокна сплетаются в пучки, толщина которых зависит как от количества нейронов, входящих в их состав, так и от морфологических особенностей этих нейронов (с оболочкой они или без). За счет этого становится возможной передача сразу большого количества информации в разные структуры ЦНС. Эта же особенность объясняет тот факт, что при повреждении некоторых нервов может наблюдаться иррадиация электрических импульсов, причем возбуждаются и соседние, близлежащие и тесно соприкасающиеся друг с другом волокна. Так, при воспалении тройничного нерва человек испытывает диффузную боль, как будто болит и горло, и ухо, и голова, хотя повреждены только структуры тройничного нерва. Именно с этой особенностью связаны трудности в постановке дифференциального диагноза при нарушениях и сложности с ее лечением.

Возрастные и половые различия ПНС

Как известно, ребенок рождается с не до конца сформированной нервной системой: он не может самостоятельно держать голову, двигаться и мыслить. Все эти навыки формируются прижизненно за счет того, что нервная система очень активно развивается и дифференцируется в течение первых лет жизни. Из врожденных рефлексов новорожденный обладает только глотательным, сосательным, ориентировочным и хватательным рефлексом. Все они отчасти регулируются ПНС и структурами спинного мозга. Очевидное несовершенство периферической системы грудного ребенка проявляется в особенностях терморегуляции и повышенной чувствительности кожных покровов.

Постепенно к 3-5 годам безмиелиновые нервные волокна преобразуются в миелиновые, увеличивается толщина нейронов и их количество, они становятся более разветвленными и начинают более локализовано проводить импульсы. Ребенок уже не плачет оттого, что ему везде жарко или холодно, а может целенаправленно погреть руки под водой или снять теплый шарф.

К 12-14 годам нервные ганглии ПНС можно считать сформированными: они достаточно дифференцированы по функционалу и морфологически развиты.

К 18-20 годам ПНС считается полностью сформированной и более не развивается в плане усложнения строения.

В пожилом возрасте количество нейронов в ЦНС и ПНС начинает постепенно сокращаться, ряд из и вовсе атрофируется и перестает передавать импульсы: отсюда проистекает старческая мерзлявость, онемение конечностей, частые иррадиированные болевые синдромы.

Поскольку ПНС подвержена токсическому влияния и воздействию химически активных веществ (сюда входят также и гормоны), женщины более склонны к нарушениями со стороны периферических систем, чем мужчины. У них чаще встречаются нарушения вегето-сосудистой системы, различной этиологии невриты, невралгии и защемления нервов. В то же время для мужчин чаще характерны поражения ПНС, связанные с травматизацией и нефизиологичными нагрузками: радикулиты, люмбаго, интоксикационные поражения на фоне алкоголизма и пр.

Сложность строения ПНС объясняет сложности в постановке правильного диагноза при каких-либо ее нарушениях, поэтому часто врачи рекомендуют общие процедуры, направленные на сохранение здоровья и поддержание иммунитета: закаливание, правильное питание, полноценная физическая нагрузка и отдых, массаж и водные процедуры.

Важно также помнить, что периферийная структура является частью ЦНС, поэтому бережное отношение к организму в целом — залог здоровья и качественной жизни до старости.

Читайте ещё

neurodoc.ru

Периферическая нервная система - это... Что такое Периферическая нервная система?

Нервная система человека. Синим выделена периферическая, а красным центральная нервные системы

Периферическая нервная система (ПНС) соединяет центральную нервную систему с органами и конечностями. Нейроны периферической нервной системы располагаются за пределами центральной нервной системы — головного и спинного мозга.[1]

В отличие от центральной нервной системы, периферическая нервная система не защищена костями или гематоэнцефалическим барьером, и может быть подвержена механическим повреждениям и действиям токсинов.

Периферическую нервную систему классифицируют на соматическую нервную систему и вегетативную нервную систему; некоторые источники также добавляют сенсорную систему.[2]

Выделяют два типа направлений нейронов: чувствительные сенсорные нейроны (то есть передающие импульсы в центральную нервную систему); чувствительные двигательные нейроны (то есть передающие импульсы из центральной нервной системы).

Функции

Периферическая нервная система функционально и структурно разделяется на соматическую нервную систему и вегетативную нервную систему. Соматическая нервная система отвечает за координацию движений тела, а также за получение внешних стимулов. Это система, регулирующая сознательно контролируемую деятельность. Вегетативная нервная система в свою очередь делится на симпатическую нервную систему, парасимпатическую нервную систему и энтеральную нервную систему. Симпатическая нервная система отвечает за реагирование на надвигающуюся опасность или стресс и вместе с другими физиологическими изменениями отвечает за увеличение частоты пульса и кровяного давления, а также при появлении чувства волнения способствует повышению уровня адреналина. Парасимпатическая нервная система, напротив, становится заметной, когда человек отдыхает и чувствует себя расслабленно, она отвечает за такие вещи как сужение зрачков, замедление сердцебиения, расширение кровеносных сосудов и стимуляцию работы пищеварительной и мочеполовой систем. Роль энтеральной нервной системы состоит в управлении всеми аспектами пищеварения, от пищевода до желудка, тонкого кишечника и прямой кишки.

Название определённых нервов

Десять из двенадцати черепномозговых нервов идут из мозгового ствола и за некоторыми исключениями в основном управляют функциями анатомических структур головы. Ядра черепномозговых нервов I и II лежат в переднем мозге и в таламусе соответственно, поэтому их нельзя считать по-настоящему черепномозговыми нервами. Десятый нерв висцерально получает сенсорную информацию от груди и живота, а 11-й нерв отвечает за иннервацию кивательной и трапециевидной мышц, ни одна из которых не находится полностью на голове.

Спинные нервы берут начало в спинном мозге и управляют функциями остальных частей тела. У людей 31 пара спинномозговых нервов: 8 шейных, 12 грудных и 5 поясничных, 5 крестцовых и 1 копчиковый. В шейном отделе спинномозговые нервы берут начало выше соответствующего позвонка (то есть нерв, начинающийся между черепом и первым шейным позвонком, зовётся первым спинным нервом). От грудной области до копчиковой нервы начинаются ниже соответствующих позвонков. Важно отметить, что этот способ создаёт проблемы при назывании спинного нерва, берущего начало между седьмым верхним и первым нижним (так называемый восьмой спинной нерв). В поясничной и крестцовой областях корневые концы нервов находятся в пределах дюрального мешка.

Спинные нервы шейного отдела

Первые четыре спинномозговых нерва шейного отдела разветвляются и воссоединяются таким образом, чтобы образовывались различные нервы для обслуживания шеи и затылка.

Первый спинной нерв называется подзатылочным нервом и служит для двигательной иннервации мышц у основания черепа. Второй и третий нервы формируют множество нервов шеи, обеспечивая как сенсорный, так и двигательный контроль. Сюда входит большой затылочный нерв, обеспечивающий чувствительность затылочной части головы, малый затылочный нерв, обеспечивающий чувствительность в области за ушами, большой слуховой нерв и малый слуховой нерв. Грудобрюшный нерв начинается от второго, третьего и пятого спинных нервов. Он иннервирует диафрагму, позволяя дышать. Если спинной мозг перебит выше третьего спинного нерва, то самопроизвольное дыхание становится невозможным.

Плечевое нервное сплетение

Последние четыре спинномозговых нерва, с пятого по восьмой, и первый спинной нерв грудинной области, Т1, скомбинированы для образования плечевого нервного сплетения, или плечевого узла, обширного нервного узла с разветвляющимися, воссоединяющимися и переплетающимися нервами, обслуживающими руку и верхнюю часть спины. Хотя плечевое сплетение кажется запутанным, на самом деле оно имеет высоко организованную структуру с небольшими различиями у разных людей.

Нейромедиаторы

Главными нейромедиаторами периферической нервной системы являются ацетилхолин и норадреналин. Также в ПНС имеются и другие нейромедиаторы (гистамин, гамма-аминомасляная кислота, дофамин, оксид азота и др.) а также медиаторные нейропептиды: нейропептид Y, вазоактивный интестинальный пептид, гонадолиберин, вещество Р и галцитонин-генносвязанный пептид[3].

Заболевания

I. По топографо-анатомическому принципу различают: · радикулиты (воспаление корешков); · фуникулиты (воспаление канатиков); · плекситы (воспаление сплетений); · мононевриты (воспаление периферических нервов); · полиневриты (множественное воспаление периферических нервов); · мультиневриты или множественные мононевриты при которых поражаются несколько периферических нервов, часто асимметрично. II. По этиологии заболевания периферической нервной системы разделяются на :

  1. Инфекционные:
    1. вирусные (полиневрит Гийена-Барре, при вирусных заболеваниях, гриппе, ангине, инфекционном мононуклеоз и др.);
    2. микробные (при скарлатине, бруцеллезе, сифилисе, лептоспирозе и др.).
  2. Инфекционно-аллергические (при детских экзантемных инфекциях: корь, краснуха и др.)
  3. Токсические
    1. при хронических интоксикациях (алкоголизм, свинец и др.);
    2. при токсикоинфекциях (ботулизм, дифтерия);
    3. бластоматозный (при раке легких, желудка и др.).
  4. Аллергические (вакцинальные, сывороточные и др.).
  5. Дисметаболические: при дефиците витаминов, при эндокринных заболеваниях (сахарный диабет) и др.
  6. Дисциркуляторные: при узелковом периартериите, ревматических и других васкулитах.
  7. Идиопатические и наследственные (невральная амиотрофия Шарко-Мари и др.).
  8. Травматические поражения периферической нервной системы.
  9. Компрессионно-ишемические поражения отдельных периферических нервов (синдром запястного канала, синдром тарзального канала и др.).
  10. Вертеброгенные поражения. [4]

Примечания

dic.academic.ru

Периферическая и центральная части нервной системы

ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА

ЦНС состоит из головного и спинного мозга и их защитных оболочек. Самой наружной является твердая мозговая оболочка, под ней расположена паутинная (арахноидальная), а затем мягкая мозговая оболочка, сращенная с поверхностью мозга. Между мягкой и паутинной оболочками находится подпаутинное (субарахноидальное) пространство, содержащее спинномозговую (цереброспинальную) жидкость, в которой как головной, так и спинной мозг буквально плавают. Действие выталкивающей силы жидкости приводит к тому, что, например, головной мозг взрослого человека, имеющий массу в среднем 1500 г, внутри черепа реально весит 50–100 г. Мозговые оболочки и спинномозговая жидкость играют также роль амортизаторов, смягчающих всевозможные удары и толчки, которые испытывает тело и которые могли бы привести к повреждению нервной системы.

ЦНС образована из серого и белого вещества. Серое вещество составляют тела клеток, дендриты и немиелинизированные аксоны, организованные в комплексы, которые включают бесчисленное множество синапсов и служат центрами обработки информации, обеспечивая многие функции нервной системы. Белое вещество состоит из миелинизированных и немиелинизированных аксонов, выполняющих роль проводников, передающих импульсы из одного центра в другой. В состав серого и белого вещества входят также клетки глии.

Нейроны ЦНС образуют множество цепей, которые выполняют две основные функции: обеспечивают рефлекторную деятельность, а также сложную обработку информации в высших мозговых центрах. Эти высшие центры, например зрительная зона коры (зрительная кора), получают входящую информацию, перерабатывают ее и передают ответный сигнал по аксонам.

Результат деятельности нервной системы – та или иная активность, в основе которой лежит сокращение или расслабление мышц либо секреция или прекращение секреции желез. Именно с работой мышц и желез связан любой способ нашего самовыражения.

Поступающая сенсорная информация подвергается обработке, проходя последовательность центров, связанных длинными аксонами, которые образуют специфические проводящие пути, например болевые, зрительные, слуховые. Чувствительные (восходящие) проводящие пути идут в восходящем направлении к центрам головного мозга. Двигательные (нисходящие) пути связывают головной мозг с двигательными нейронами черепно-мозговых и спинномозговых нервов.

Проводящие пути обычно организованы таким образом, что информация (например, болевая или тактильная) от правой половины тела поступает в левую часть мозга и наоборот. Это правило распространяется и на нисходящие двигательные пути: правая половина мозга управляет движениями левой половины тела, а левая половина – правой. Из этого общего правила, однако, есть несколько исключений.

Головной мозг состоит из трех основных структур: больших полушарий, мозжечка и ствола.

Большие полушария – самая крупная часть мозга – содержат высшие нервные центры, составляющие основу сознания, интеллекта, личности, речи, понимания. В каждом из больших полушарий выделяют следующие образования: лежащие в глубине обособленные скопления (ядра) серого вещества, которые содержат многие важные центры; расположенный над ними крупный массив белого вещества; покрывающий полушария снаружи толстый слой серого вещества с многочисленными извилинами, составляющий кору головного мозга.

Мозжечок тоже состоит из расположенного в глубине серого вещества, промежуточного массива белого вещества и наружного толстого слоя серого вещества, образующего множество извилин. Мозжечок обеспечивает главным образом координацию движений.

Ствол мозга образован массой серого и белого вещества, не разделенной на слои. Ствол тесно связан с большими полушариями, мозжечком и спинным мозгом и содержит многочисленные центры чувствительных и двигательных проводящих путей. Первые две пары черепно-мозговых нервов отходят от больших полушарий, остальные же десять пар – от ствола. Ствол регулирует такие жизненно важные функции, как дыхание и кровообращение.

Спинной мозг. Находящийся внутри позвоночного столба и защищенный его костной тканью спинной мозг имеет цилиндрическую форму и покрыт тремя оболочками. На поперечном срезе серое вещество имеет форму буквы Н или бабочки. Серое вещество окружено белым веществом. Чувствительные волокна спинномозговых нервов заканчиваются в дорсальных (задних) отделах серого вещества – задних рогах (на концах Н, обращенных к спине). Тела двигательных нейронов спинномозговых нервов расположены в вентральных (передних) отделах серого вещества – передних рогах (на концах Н, удаленных от спины). В белом веществе проходят восходящие чувствительные проводящие пути, заканчивающиеся в сером веществе спинного мозга, и нисходящие двигательные пути, идущие от серого вещества. Кроме того, многие волокна в белом веществе связывают различные отделы серого вещества спинного мозга.

Отдел мозга Основные функции
Мозжечок · координация движений
Промежуточный мозг · центр удовольствия, жажды, колода, чувства насыщения, · отвечает за сон и состояние активности человека, регулирует постоянную температуру тела, в общем на нем лежит ответственность за нервно-гуморальную регуляцию организма.
Средний мозг · отвечает за некоторые безусловные рефлексы и обрабатывает информацию, поступившую через зрение и слух (визуальную и аудитивную),
Продолговатый мозг · все жизненно-необходимые и важные рефлексы (в том числе защитные: кашель, чихание и т.д.), пищеварение, дыхание, тонус сосудов организма, работа сердечной системы,

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

ПНС обеспечивает двустороннюю связь центральных отделов нервной системы с органами и системами организма. Анатомически ПНС представлена черепно-мозговыми (черепными) и спинномозговыми нервами, а также относительно автономной энтеральной нервной системой, локализованной в стенке кишечника.

Все черепно-мозговые нервы (12 пар) разделяют на двигательные, чувствительные либо смешанные. Двигательные нервы начинаются в двигательных ядрах ствола, образованных телами самих моторных нейронов, а чувствительные нервы формируются из волокон тех нейронов, тела которых лежат в ганглиях за пределами мозга.

От спинного мозга отходит 31 пара спинномозговых нервов: 8 пар шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 копчиковая. Их обозначают в соответствии с положением позвонков, прилежащих к межпозвоночным отверстиям, из которых выходят данные нервы. Каждый спинномозговой нерв имеет передний и задний корешки, которые, сливаясь, образуют сам нерв. Задний корешок содержит чувствительные волокна; он тесно связан со спинальным ганглием (ганглием заднего корешка), состоящим из тел нейронов, аксоны которых образуют эти волокна. Передний корешок состоит из двигательных волокон, образованных нейронами, клеточные тела которых лежат в спинном мозге.

Периферическая нервная система образована узлами ( спинномозговыми , черепными и вегетативными ), нервами (31 пара спинно-мозговых и 12 пар черепных ) и нервными окончаниями, которые и обеспечивают связь ЦНС со всеми рецепторами и эффекторами организма.

В состав периферической нервной системы включают также черепные, спинно-мозговые и вегетативные ганглии, представляющие собой скопления тел нейронов за пределами ЦНС. Большинство периферических структур содержит чувствительные, двигательные и вегетативные волокна.

Периферическая нервная система делится на вегетативную нервную систему и соматическую нервную систему .

В свою очередь вегетативная нервная система также состоит из двух систем - симпатической нервной системы и парасимпатической нервной системы .

Вегетативная нервная система и соматическая нервная система действуют содружественно. Их нервные центры, особенно на уровне ствола головного мозга и полушарий головного мозга , невозможно отделить друг от друга; однако периферические отделы этих двух систем совершенно различны.

35. Рефлекторная дуга (нервная дуга) — путь, проходимый нервными импульсами при осуществлении рефлекса.

Рефлекторная дуга состоит из:

рецептора — нервное звено, воспринимающее раздражение;

афферентного звена — центростремительное нервное волокно — отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в центральную нервную систему;

центрального звена — нервный центр (необязательный элемент, например для аксон-рефлекса);

эфферентного звена — осуществляют передачу от нервного центра к эффектору.

эффектор — исполнительный орган, деятельность которого изменяется в результате рефлекса.

исполнительный орган - приводит в действие работу организма.

Структурной основой рефлекса является рефлекторная дуга — последовательно соединенная цепочка нервных клеток, обеспечивающая осуществление реакции, или ответа, на раздражение. Рефлекторная дуга состоит из афферентного, центрального и эфферентного звеньев, связанных между собой синаптическими соединениями (рис. 4.1). Афферентная часть дуги начинается рецепторными образованиями, назначение которых заключается в транс­формации энергии внешних раздражений в энергию нервного импульса, поступающего по афферентному звену дуги рефлекса в центральную нервную систему.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распространяется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

Наличие синаптическойзадержки. Время рефлекторной реакции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относительно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка при­мерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, ста­новится понятной длительность большинства рефлекторных реакций — десятки миллисекунд.

Трансформация ритма возбуждения, т.е. изменение ритма приходящих на входы нейрона импульсных потоков, достигается за счет нескольких механизмов: урежениеимпульсации связано с более низкой лабильностью нейрона-приемника, обусловленной длительной фазой его следовой гиперполяризации, а учащение, напротив,— с длительной деполяризацией, достигающей критического уровня, что способствует генерации множественных потенциалов действия, а также с включением нейронов в реверберирующие цепочки возбуждения.

Рефлекторное последействие (облегчение) обусловлено (как и при трансформации) длительной следовой критической деполяризацией мембраны нейронов, обеспечивающей кратковременную фасилитацию, и циркуляцией импульсов в «ловушках возбуждения» (Лоренте де Но), создающей условия для длительного последействия.

Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомле­нием. Этот процесс связан с деятельностью синапсов — впоследних наступает истощение запасов медиатора, уменьшаются энергетиче­ские ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

В числе свойств нервных центров следует отметить их высокую чувствительность к недостатку кислорода (которая понижается при гипотермии, приводящей к снижению уровня метаболизма) и к ряду нейротропных веществ: нервным ядам, наркотикам, алкоголю, ганглиоблокаторам, антидепрессантам, психостимуляторам, транквилизаторам.

Типы нейронов.

Функционально нейроны делят на три типа:

Классификация нейронов. Нейроны в ЦНС разделяют на афферентные (чувствительные), эфферентные (эффекторные) и промежуточные, или вставочные (ассоциативные).

Афферентные (сенсорные, чувствительные, рецепторные) нейроны проводят возбуждение от рецепторов в ЦНС. Их тела располагаются, как правило, вне ЦНС, в спинномозговых ганглиях или ганглиях черепно-мозговых нервов, а также в зрительных буграх. В отличие от других нервных клеток они псевдоуниполярны , так как имеют сросшиеся между собой два отростка - аксон, по которому возбуждение поступает от сомы в спинной и головной мозг, и длинный дендрит, который уходит на периферию и образует чувствительные нервные окончания - рецепторы - во всех органах и тканях организма.

Эффекторные нейроны посылают импульсы к периферическим органам и тканям. К ним относятся мотонейроны, посылающие возбуждение к мышцам, от ядер головного мозга на нижележащие нейроны, а также нервные клетки, лежащие в ганглиях вегетативной нервной системы.

По форме нейроны делят на:

Биполярные, Униполярные, Псевдоуниполярные, Мультиполярные.

По химической характеристике вы­деляемых в окончаниях аксонов веществ, отличают нейроны:

Холинэргические,

Пептидэргические,

Норадреналинэргические,

Дофаминэргические,

Серотонинэргические и др.

По признаку чувствительность к разным раздражителям нейроны делят на

Моносенсорные,

Бисенсорные

Полисенсорные.

Моносенсорные нейроны располагают­ся чаще в первичных проекционных зонах коры и реагируют только на сигналы своей модальности. Например, значительная часть ней­ронов первичной зрительной коры реагирует только на световое раздражение сетчатки глаза.

Бисенсорные нейроны располагаются преимущественно во вторичных зонах коры анализатора и могут реагировать как на сигналы своей, так и на сигналы другой мо­дальности. Например, нейроны вторичной зрительной коры реаги­руют на зрительные и слуховые раздражения.

Полисенсорные ней­роны — это чаще всего нейроны ассоциативных зон мозга. Они способны реагировать на раздражение слуховой, зрительной, кожной и др. анализаторных систем.

Вставочные, или интернейроны, составляют самую многочисленную группу. Им принадлежит функция связи между рецепторными и эффекторными нервными клетками. По характеру вызываемого ими эффекта промежуточные нейроны подразделяются на возбуждающие и тормозящие.

Количество всех выходящих из ЦНС эфферентных волокон, а, следовательно, и количество эфферентных нейронов исчисляется сотнями тысяч. Афферентных волокон, а , значит и афферентных нейронов, в 2-5 раз больше. Суммарное количество тех и других считают равным нескольким миллионам. Количество же нервных клеток лишь в коре головного мозга принимают равным 14-15 миллиардам. Эти величины убедительно говорят о числе и значении вставочных нейронов.

37. Центральные синапсы

Синапс – это структурно-функциональное образование, обеспечивающее переход возбуждения или торможения с окончания нервного волокна на иннервирующую клетку.

Структура синапса: 1) пресинаптическая мембрана (электрогенная мембрана в терминале аксона, образует синапс на мышечной клетке); 2) постсинаптическая мембрана (электрогенная мембрана иннервируемой клетки, на которой образован синапс); 3) синаптическая щель (пространство между пресинаптической и постсинаптической мембраной, заполнена жидкостью, которая по составу напоминает плазму крови).

Существует несколько классификаций синапсов.

По локализации: 1) центральные синапсы;

2) периферические синапсы.

Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы.

Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают: 1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона; 2) аксодендритный, образованный аксоном одного нейрона и дендритом другого; 3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);

4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Возбуждающими химическими синапсами называются такие синапсы, в которых в результате поступления импульса происходит деполяризация постсинаптической мембраны, которая при определенных условиях может вызвать потенциал действия. Возбуждающие химические синапсы изучают на мотонейроне, так как он достаточно большого размера (диаметр сомы до 100 мкм). Каждый мотонейрон имеет около 6 000 аксосоматических синапсов и аксодендритных синапсов, как тормозных, так и возбуждающих. Некоторые возбуждающие синапсы образованы афферентами рецепторов растяжения мышечных веретен скелетных мышц. Активируя эти синапсы раздражением нервных волокон скелетных мышц, можно регистрировать синаптические процессы с помощью внутриклеточных микроэлектродов.

При электрическом раздражении мышечных афферентов после короткого латентного периода возникает деполяризация постсинаптической мембраны, амплитуда которой зависит от количества возбужденных афферентов, и, следовательно, от интенсивности электрического стимула. Эта деполяризация может возбуждать нейрон, вызывая распространяющийся потенциал действия и называется возбуждающим постсинаптическим потенциалом.

В возбуждающих синапсах под действием ацетилхолина открываются специфические натриевые каналы и калиевые каналы в постсинаптической мембране. Ионы натрия входят клетку, а ионы калия выходят из нее в соответствии с их концентрационными градиентами. В результате происходит деполяризация постсинаптической мембраны, которая называется возбуждающим постсинаптическим потенциалом.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 3

Электрические синапсы возбуждающего действия. Существование таких синапсов предполагали давно. Возбуждающие электрические синапсы имеются в нервной системе и беспозвоночных, и позвоночных животных, но наиболее изучены они у беспозвоночных. Всем синапсам этого типа свойственны очень узкая синаптическая щель (около 5 нм) и очень низкое удельное сопротивление сближенных пре— и постсинаптических мембран для проходящего через них электрического тока.

Это низкое сопротивление, как правило, связано с наличием поперечных каналов, пересекающих обе мембраны, т. е. идущих из клетки в клетку (щелевой контакт) (см. рис, 1.31). В пре— и постсинаптической мембранах щелевого контакта регулярно распределены коннексоны, находящиеся точно друг против друга. Внутри них есть просвет, так что каждая пара расположенных по одной линии коннексонов образует канал, через который сообщаются две клетки. Диаметр каналов составляет около 1 нм. Каналы образуются белковыми молекулами (полуканалами) каждой из контактирующих мембран, которые соединяются комплементарно (см. рис. 1.32). Эта структура легкопроходима для электрического тока.

Схема передачи возбуждения в электрическом синапсе подобна схеме проведения ПД в гомогенном нервном проводнике. Здесь петля тока, порождаемого пресинаптическим ПД, раздражает постсинаптическую мембрану.

Важно заметить, что поперечные каналы объединяют клетки не только электрически, но и химически, так как они проходимы для многих низкомолекулярных метаболитов. Поэтому возбуждающие электрические синапсы с поперечными каналами формируются, как правило, между клетками (например нейронами) одного вида специализации.

Электрические синапсы, передающие возбуждение, — не вполне однородная группа. Они различаются по значению коэффициента передачи (Кп) электрического сигнала, т. е. по отношению получаемого изменения потенциала (ΔU) на постсинаптической мембране к задаваемому ΔU на пресинаптической мембране и по отсутствию или наличию выпрямляющих свойств, т. е. по тому, передается ли в них электрический сигнал двусторонне или односторонне.

Рис. 1.31 Ультраструктура щелевого контакта — нексуса.
Рис. 1.32 Строение и работа возбуждающего (электротонического) синапса септированного аксона А — раздражение постсинаптической клетки (2) петлей тока ПД пресинаптической клетки (1); Б — участок близкого прилежания пре— (1) и постсинаптической (2) мембран с поперечным каналом, обеспечивающим протекание ионного тока; В — соотношение во времени (t) пре— (1) и постсинаптического (2) ПД. Стрелкой показано направление тока.

Рассмотрим конкретные примеры.

У кольчатых червей и раков есть так называемые септированные гигантские аксоны, состоящие из последовательно соединенных отростков нервных клеток. Эти отростки связаны между собой щелевыми контактами — электрическими синапсами с двусторонней передачей. Удельное сопротивление септы (т. е. пары мембран, пронизанных поперечными каналами) здесь очень низко и составляет примерно 1 Ом • см2(при Rм = 1000 Ом • см2 ). Однако септы имеют малую площадь и у каждой из них общее R ≈ 0,2 МОм. Поэтому в синапсе Кп = 0,37, а передача ПД по той же причине происходит с некоторой задержкой (0,05 мс).

Аналогичные электрические синапсы, но с меньшим Кп(≈0,15 ... 0,19) существуют между некоторыми нейронами (аксонами, дендритами) в нервной системе моллюсков, а также в мозгу рыб и млекопитающих. Через эти синапсы пресинаптические ПД не передаются, а проходят лишь порождаемые ими электротонические подпороговые сигналы. Такие синапсы способствуют синхронизации разрядов связанных клеток при их общем раздражении из других источников.

Электрический синапс может иметь высокий Кп и обеспечивает распространение ПД лишь в тех случаях, когда постсинаптическая клетка меньше пресинаптической или хотя бы не слишком превосходит ее по размерам. Иначе происходит резкое падение плотности пресинаптического тока на постсинаптической мембране.

Пример электрического синапса с односторонней передачей возбуждения — синапс между латеральным гигантским волокном (Л—аксоном командного нейрона) и гигантским моторным волокном (М—аксоном мотонейрона) у рака. В этом синапсе Кп в ортодромном направлений (Л → М) равен 0,25, а Кп в антидромном направлении (М → Л) составляет 0,005. По—видимому, антидромный сигнал закрывает каналы. При амплитуде пресинаптического ПД, равной, например, 120 мВ, ΔU на постсинаптической мембране (в моторном волокне) составит 30 мВ, и этого достаточно для вызова ПД. При искусственном вызове

Рис. 1.33 Схема химической синаптической передачи
Рис. 1.34 Ультраструктура нервно—мышечного синапса Вверху слева: нервное окончание на мышечном волокне; на схеме рядом — пресинаптическое окончание вместе с лежащей под ним складчатой мышечной мембраной при большом увеличении. Внизу: еще большее увеличение: мембрана пресинаптического нейрона с частично разъединенным внутренним и внешним слоями, а под ней соответствующие слои субсинаптической мембраны мышцы. «Частицы» — это ацетилхолиновые рецепторы и молекулы холинестеразы в мембране.

постсинаптического ПД (в 120 мВ) на пресинаптической мембране возникает деполяризация, равная примерно 0,6 мВ и совершенно недостаточная для вызова пресинаптического ПД. Задержка при ортодромной передаче в этом синапсе равна 0,1 мс. Рассмотренный синапс, таким образом, обеспечивает управление мотонейроном со стороны латерального волокна.

Общими свойствами возбуждающих электрических синапсов являются:

быстродействие (оно превосходит таковое химических синапсов); слабость следовых эффектов при передаче (это свойство делает электрические синапсы непригодными для интегрирования, суммации последовательных сигналов);

высокая надежность передачи возбуждения (при высоком Кп).

Однако возбуждающие электрические синапсы не лишены некоторой пластичности, т. е. они могут возникать при благоприятных условиях и исчезать при неблагоприятных. Например, при повреждении одной из контактирующих клеток ее электрические синапсы с другими клетками ликвидируются.

Химические синапсы возбуждающего действия. В отличие от электрических химические синапсы (рис. 1.33) имеют относительно широкую синаптическую щель, составляющую 20—50 нм, и высокое сопротивление синаптических мембран. Поперечных каналов, связывающих клетки, здесь нет. Другим характерным признаком химического синапса является наличие в пресинаптической нервной терминали большого числа пузырьков — пресинаптических везикул диаметром около 50 нм. Эти везикулы заполнены медиатором — химическим передатчиком (раздражителем).

Классическим представителем группы химических синапсов является возбуждающий нервно—мышечный синапс скелетной мускулатуры позвоночных (рис. 1.34), действующий с помощью медиатора ацетилхолина (Ах).

В нем, как и в любом химическом синапсе, пресинаптический ПД не может петлей своего тока возбудить постсинаптическую клетку; Яд здесь не превышает 0,001. Ток, который выходит через пресинаптическую мембрану, здесь почти целиком уходит через широкую синаптическую щель мимо постсинаптической клетки, обладающей значительным входным сопротивлением. Небольшая же часть этого тока, которая все же входит в постсинаптическую клетку, вызывает лишь ничтожное изменение ее МП.

Рис. 1.35 Механизм химической передачи импульсов в межнейронном синапсеОт А до Д — последовательные этапы процесса.

Суть работы химического синапса состоит в следующем (рис. 1.35). Пресинаптический ПД работает как инициатор нейросекреторного акта. При развитии ПД терминали (а также и при искусственной деполяризации) в нее из среды входят ионы Са2+. Это стимулирует практически синхронный выброс медиатора в синаптическую щель из 100—200 пресинаптических везикул, каждая из которых содержит порцию — квант Ах. Большинство исследователей полагают, что этот выброс медиатора осуществляется путем экзоцитоза — опорожнения везикулы в синаптическую щель. Существует и другая точка зрения: квант медиатора аккумулирован в особых участках пресинаптической мембраны — операторах, которые и выбрасывают Ах в щель, а везикулы — это лишь депо Ах и других веществ.

Выход медиатора сильно зависит от величины деполяризации терминали. Эта крутая зависимость объясняет резкое снижение выхода медиатора при падении амплитуды ПД терминали. В нормальных условиях в ответ на нервный импульс высвобождается около миллиона молекул Ах. (в каждом кванте — везикуле — их примерно 104). Медиатор диффундирует к постсинаптической мембране, где для него существуют рецепторы (холинорецепторы — Хр). При взаимодействии Ах и Хр в последних открываются проницаемые для Na+ и К+ ионные каналы с d ≈ 0,65 нм. Так как холинорецепторов и, соответственно, каналов много, сопротивление постсинаптической мембраны сильно падает, что приводит к ее частичной деполяризации, т. е. к развитию возбуждающего постсинаптического потенциала (ВПСП).

Для нервно—мышечного синапса ВПСП называют потенциалом концевой пластинки (ПКП). Потенциал концевой пластинки, в свою очередь, создает ток, раздражающий соседнюю с постсинаптической электровозбудимую мембрану мышечного волокна, что и порождает в ней ПД.

Таким образом, химическое звено в синапсе выполняет функцию усилителя.

Синоптическая задержка, т. е. время от прихода нервного импульса до развития постсинаптического ответа, в химическом синапсе составляет около 0,2—0,5 мс, причем основная часть этого времени тратится на процесс секреции медиатора. Химический синапс — это «вентильный механизм», рабочий сигнал в нем передается односторонне (что не исключает обратных связей).

ВПСП (ПКП) — локальный потенциал, который электротонически распространяется по мембране. С помощью внутриклеточных микроэлектродов и методики фиксации потенциала можно изучить токи, проходящие через активируемую постсинаптическую мембрану. В подобных экспериментах, варьируя ионный состав среды, установили, что Ах открывает в постсинаптической мембране каналы, пропускающие катионы Na+, K+, но не пропускающие анионы Сl—.

Ток концевой пластинки (ТКП) и в клампе, и в обычных условиях представляет собой результат движения ионов Na+ и К+ по их электрохимическим градиентам. При обычных значениях МП (—80, —60 мВ) токNa+ направлен внутрь, а ток К+ — наружу, причем первый больше второго и суммарный (здесь разностный) ток является входящим.

Мембранный потенциал, при котором IK = INa и суммарный ток равен нулю, называют потенциалом реверсии ТКП (ЕрТКП). По тем же причинам ПКП на фоне нормальных МП (90, —70 мВ и т. д.) развивается как деполяризация. При МП, равном нулю, ПКП отсутствует, при положительных МП развивается как гиперполяризация.

Формы ТКП (в клампе) и ПКП (рис. 1.36) несколько различаются. ТКП короче, основная его часть по длительности соответствует восходящей фазе ПКП. Соответственно у ПКП лишь восходящая фаза создается трансмембранными ионными токами. Относительно более медленный спад ПКП определяется постепенной зарядкой мембранной емкости и пропорционален τм.

Рис. 1.36 Форма ПКП (А) и формы ТКП (Б) при фиксации потенциала на разных уровнях (указаны значения в милливольтах)

Помимо рабочих ПКП (ВПСП), инициируемых нервным импульсом, в нервно—мышечных синапсах существуют спонтанные, обычно редкие миниатюрные ПКП (ВПСП), составляющие доли милливольта и обозначаемые МПКП (МВПСП). Они отражают спонтанный выброс одиночных квантов медиатора (т. е. содержимого одиночных везикул, что составляет около 104 молекул Ах) и реакцию на них постсинаптической мембраны. Как уже указывалось, рабочий ПКП складывается из 100—200 МПКП, это число называют квантовым составом ПКП.

Амплитуда у многоквантового ПКП (30—40 мВ) больше, чем у МПКП, по следующей причине. МПКП и ПКП порождаются током, возникающим в связи с открытием каналов в постсинаптической мембране. Этот ток проходит последовательно через открытые каналы и так называемое входное сопротивление волокна. Так как входное сопротивление гораздо меньше, чем сопротивление канала холинорецептора, то изменение потенциала мембраны тем больше, чем больше действует каналов. При многоквантовости ПКП активируется больше постсинаптических каналов, чем при МПКП.

С помощью микропипетки с оплавленными (гладкими) краями кончика, прижимаемой к поверхности мышцы в районе синапса, можно осуществить фиксацию потенциала и отведение токов от подлежащего малого участка постсинаптической мембраны, который содержит лишь один Хр (см. рис. 1.19). Это методика пэч—клампа. При введении в такую микропипетку раствора, содержащего Ax, Nа+ и др., холинорецептор то открывает для ионов Na+ свой ионный канал в связи со случайной рецепцией Ах, то закрывает его (при разобщении Хр и Ах).

Оказалось, что при этом ток одиночного Хр—канала развивается мгновенно, сохраняет некоторое время постоянное значение и мгновенно исчезает («прямоугольная» форма). Средняя проводимость Хр—канала составляет 20—30 пСм, а среднее время «жизни», т. е. открытого состояния канала, — примерно 1 мс. Форма МТКП, как следует из рис. 1.19, отличается от формы тока канала. Причина этого явления заключается в том, что при МТКП Хр—каналы открываются не совсем одновременно, и это замедляет подъем МТКП, а время жизни у массы каналов сильно варьирует, что создает экспоненциальный спад МТКП.

Рассмотрим некоторые подробности работы, возбуждающего химического синапса на спинальном мотонейроне кошки. Этот нейрон имеет шаровидную сому (d= 70 мкм), от которой отходит множество конических дендритов и один аксон. Сома и дендриты густо покрыты нервными окончаниями — синаптическими бутонами и отростками глиальных клеток. Синаптических бутонов на одном мотонейроне может быть около 10 000. Нервные волокна, направляющиеся к мотонейрону, на расстоянии в 100—20 мкм от него теряют миелиновую оболочку и истончаются (до 0,5—2 мкм в диаметре). Синаптические бутоны содержат везикулы. Синаптические щели имеют ширину 20 нм; МПП мотонейрона — 60—80 мВ.

Возбуждающий постсинаптический потенциал, возникающий в соме при приходе одиночного залпа импульсов соответствующих афферентных волокон, развивается как деполяризация с временем возрастания (tв), равным 1,5—2 мс, и постоянной времени спадает), равной 4,7 мс. Амплитуда такого ВПСП, возникающего под одиночным (унитарным) синаптическим входом (т. е. входом от одного афферентного волокна), невелика (0,12—0,24 мВ) и стандартна. Она не зависит от силы раздражения волокна. Но если раздражается многоволоконный дорсальный корешок или периферический нерв, то ответный ВПСП больше и его амплитуда увеличивается с усилением раздражения. Последнее объясняется увеличением количества синхронно активных синаптических входов на данном нейроне, т. е. количества синхронно возникающих элементарных ВПСП. Причины роста амплитуды здесь по существу те же, что и в случае роста ПД нервного ствола (см. разд. 1.1.4). Важно заметить, что ВПСП одиночных синаптических входов имеют очень низкий квантовый состав (один—два).

Возбуждающий постсинаптический потенциал мотонейрона определяется трансмембранным ионным током, по времени соответствующим восходящей фазе ВПСП. Этот ток возникает из—за того, что медиатор афферентов (глутамат или вещество Р) открывает ионные каналы в постсинаптической мембране. Характер трансмембранного ионного тока был определен в опытах с электрофоретическими инъекциями различных ионов в мотонейроне через микроэлектроды (у кошки и лягушки) и в экспериментах с вариациями межклеточной ионной среды (у лягушки). Оказалось, что ток, порождающий ВПСП, и соответствующий ток при фиксации потенциала (в «клампе») — это пассивный (т. е. текущий по электрохимическому градиенту) натриевый ток, слабо шунтируемый калиевым током. Потенциал реверсии ВПСП составляет от 3 до 5 мВ. Падение Rвх (рост проводимости) в момент развития ВПСП невелико — всего 5%.

Рис. 1.37 Регистрация (А) и временное течение ВПСП и ПД (Б) в мотонейроне спинного мозга позвоночного при одиночной стимуляции группы возбуждающих (Iа) волокон дорсального корешка 1 — начальный сегмент аксона, 2 — сома—дендритный комплекс, 3 — потенциал действия начального сегмента, 4 —потенциал действия сома—дендритного комплекса, 5 — ВПСП.

Возбуждающие постсинаптические потенциалы соседних синаптических входов на мембране начального сегмента аксона и сомы нейрона суммируются между собой. Так же суммируются и последовательно возникающие ВПСП. Когда общая деполяризация достигает определенной величины (КУД), возникает ПД нейрона. Однако существует особенность. Дело в том, что аксонный холмик (начальный сегмент аксона) имеет приблизительно в три раза более низкий относительно сомы порог электрического раздражения. Ток, порождаемый ВПСП, выходит через все внесинаптические участки мембраны нейрона, но в этих условиях именно в аксонном холмике он порождает ПД. Считают, что холмик играет роль триггера — «спускового крючка». Отсюда ПД распространяется в аксон, а также ретроградно в сому (рис. 1.37). Последнее, видимо, необходимо для согласования аксонального и соматического метаболизма.

На электрограмме, которую записывают с помощью внутриклеточного электрода, введенного в сому, ПД начального сегмента аксона и ПД сома—дендритного комплекса слиты в общий ПД, хотя эти компоненты можно различить. Ступенька на переднем фронте ПД — по существу ПД начального сегмента, сниженный расстоянием (λ в сома—дендритном комплексе составляет около 400 мкм). Интересна особенность ПД сомы мотонейрона: он содержит те же компоненты, что и аксональный ПД, только с более сильным следовым положительным потенциалом.

В интернейронах спинного мозга кошки картина синаптического возбуждения несколько иная. Например, в интернейронах — клетках Реншоу — в ответ на одиночный возбуждающий синаптический залп регистрируется длительный ВПСП, порождающий длинную серию ПД. По—видимому, в синапсах этих клеток имеются условия для существенного продления действия медиатора (Ax), a внесинаптическая мембрана этих нейронов обладает очень низкой аккомодационной способностью. В клетках Реншоу триггерной зоной является не аксонный холмик, а соматическая мембрана, прилежащая к синаптическим районам. Их очень краткий ПД (время пика — 0,5—1,0 мс) не имеет сильного следового положительного потенциала. Такими свойствами, вероятно, обладают многие вставочные нейроны (интернейроны) ЦНС.

Среди нейронов ЦНС у разных животных, особенно у насекомых (а также среди элементов сетчатки глаза позвоночных), существуют и такие клетки, которые никогда не генерируют ПД. У них либо очень короткие аксоны, либо их нет вовсе, и роль выходного элемента выполняет дендрит. Их ВПСП возникающие в соме, могут электротонически распространяться до окончания аксона (дендрита), побуждая его к секреции медиатора.

Таким образом, в отличие от электрических возбуждающие химические синапсы: 1) передают сигнал относительно медленно; 2) передают сигнал всегда односторонне; 3) имеют достаточно высокую надежность передачи, которая однако резко падает при некоторых изменениях в межклеточной среде, особенно при снижении (Са2+); 4) обнаруживают значительные следовые процессы, что делает их способными суммировать (интегрировать) последовательные сигналы.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 4

Временная суммация возникает, как и в синапсах вследствие того, что чем больше поступает нервных импульсов, тем больше выделяется нейромедиатора в них, тем выше амплитуда возбуждающего постсинаптического потенциала (ВПСП). Поэтому рефлекторная реакция может возникать на несколько последовательных подпороговых раздражений.

Пространственная суммация наблюдается тогда, когда к нервному центру идут импульсы от нескольких рецепторов нейронов. При действии на них подпороговых стимулов, возникающие постсинаптические потенциалы суммируются, и в мембране нейрона генерируется распространяющийся ПД.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 5

Передача сигнала в химических синапсах ЦНС подобна таковой в нервно-мышечном синапсе. Однако имеется ряд отличительных особенностей, основные из которых приведены ниже.

Для возбуждения нейрона (возникновения ПД) необходимы потоки афферентных импульсов и их взаимодействие. Один пузырек (квант медиатора) содержит 110 тыс. молекул медиатора. Один ПД, пришедший в пресинаптическое окончание, обеспечивает выделение 200300 квантов медиатора. При этом возникает небольшой возбуждающий постсинаптический потенциал (ВПСП) – около 0,05 мВ (миниатюрный ВПСП). Необходимо учесть, что одновременно могут возникать не только возбуждающие, но и тормозные потенциалы. Пороговый потенциал нейрона 5–10 мВ, так как для возбуждения нейрона требуется некоторое множество импульсов. Выброс медиатора из нервного окончания обеспечивает входящий в деполяризованную терминаль Са2+, причем количество медиатора пропорционально входу ионов Са2+; четыре иона Са2+ обеспечивает выброс одного кванта медиатора. При поступлении импульсов к нейрону-мишени по различным входам в результате пространственной суммации ВПСП возникает деполяризация генераторного пункта в нейроне (аксонный холмик), которая, достигнув критической величины, обеспечивает возникновение ПД нейрона-мишени. ВПСП возникает вследствие суммарного тока в клетку и из клетки через ионные каналы различных ионов согласно их электрохимическому градиенту.

Поступивший в пресинаптическое окончание Са2+ удаляется за его пределы с помощью Са+-насоса. Прекращение действия выделившегося в синаптическую щель медиатора осуществляется частично посредством обратного захвата его пресинаптическим окончанием, частично – с помощью разрушения специальными ферментами. Например, норадреналин расщепляется моноаминоксидазой и катехолметилтрансферазой, ацетилхолин гидролизуется ацетилхолинтрансферазой, имеющейся в синаптической щели и встроенной в постсинаптическую мембрану. Прекращение действия избытков медиатора на постсинаптическую мембрану предотвращает десенситезацию – снижение чувствительности постсинаптической мембраны к действующему медиатору. Пептидные медиаторы, ферменты и другие белки, митохондрии транспортируются в пресинаптические окончания из тела клетки по аксону с помощью микротрубочек и микрофламентов, тянущихся по всей длине аксона. Из синапса ретроградно транспортируются по аксону в тело клетки вещества, регулирующие в ней синтез белка. Для этого транспорта необходимы ионы Са2+ и энергия (АТФ непрерывно ресинтезируется в аксоне).

В генерации ПД в нейронах принимают участие ионы Са2+, ток которых в клетку более медленный, чем ток Na+. В частности, в дендритах клеток Пуркинье мозжечка выявлены не только быстрые натриевые потенциалы, но и медленные кальциевые. В телах некоторых нервных клеток ПД создается преимущественно за счет Са2+.

Место возникновения генераторных ВПСП, вызывающих ПД нейрона, –тело нейрона (рис. 4.4) в непосредственной близости от места первичного возникновения ПД, располагающегося в аксонном холмике. В связи с этим некоторые авторы предлагают назвать соответствующие синапсы генераторными синапсами. Однако подавляющее большинство синапсов (в частности, в коре большого мозга – согласно расчетам, 98%) находится на дендритах и только 2% – на телах нейронов. И тем не менее площадь мембраны тела нейронов занята синапсами на 40%, дендритов – на 75%. Отношение числа синапсов к нейронам в коре большого мозга составляет 40000:1.

Рис. 4.4. Схема регистрации (а)и временное течение ВПСП и ПД (б) в мотонейроне спинного мозга позвоночного при одиночной стимуляции заднекорешковых волокон: 1 – начальный сегмент аксона; 2 – тело нейрона; 3 – синапс; 4 – регистрирующий электрод

Место возникновения ПД – аксонный холмик (генераторный пункт нейрона). Синапсы на нем отсутствуют, отличительной особенностью мембраны аксонного холмика является высокая ее возбудимость, в 3–4 раза превосходящая возбудимость сомадендритной мембраны нейрона, что объясняется более высокой (примерно в семь раз) концентрацией Na+-каналов на аксонном холмике. ВПСП, возникающие в любом участке сомы нейрона, за счет своего электрического поля достигают любого другого ее участка и аксонного холмика, соответственно вызывая ее деполяризацию до некоторого уровня. Это связано с тем, что постоянная длины в этой области нейрона (расстояние, на котором исходная амплитуда ВПСП уменьшается на 37%) составляет 1–2 мм, а диаметр тела нейрона равен всего 10–80 мкм. Когда величина ВПСП в результате суммации достаточна для уменьшения мембранного потенциала аксонного холмика до КУД (Екр) его мембраны, здесь генерируется ПД. Далее он распространяется, с одной стороны, антидромно на тело нейрона, с другой – ортодромно на аксон и по нему передается к другой клетке.

Роль дендритов в возникновении возбуждения. Дендритные синапсы получили название модуляторных, это связано с тем, что они удалены на значительное расстояние от генераторного пункта – аксонного холмика, поэтому их ВПСП не может вызвать достаточную деполяризацию и обеспечить возникновение ПД. Синаптический аппарат дендритов проявляет себя при одновременном поступлении возбуждения к значительному числу дендритных синапсов. При этом дендритные ВПСП изменяют потенциал мембраны сомы и аксонного холмика за счет электрического поля и модулируют возбудимость нейрона, делая ее большей или меньшей в зависимости от потока импульсов, активирующих тормозные и возбуждающие синапсы.

При возбуждении нейронов потребление О2 значительно возрастает. Источником энергии является в основном глюкоза крови, собственные небольшие запасы гликогена достаточно лишь на 3–5 мин работы нейрона.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 6

Действие медиатора на постсинаптическую мембрану заключается в повышении ее проницаемости для ионов Na+. Возникновение потока ионов Na+ из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуждающего постсинаптического потенциала (ВПСП).

Для синапсов с химическим способом передачи возбуждения характерны синоптическая задержка проведения возбуждения, длящаяся около 0,5 мс, и развитие постсинаптического потенциала (ПСП) в ответ на пресинаптический импульс. Этот потенциал при возбуждении проявляется в деполяризации постсинаптической мембраны, а при торможении — в гиперполяризации ее, в результате чего развивается тормозной постсинаптический потенциал (ТПСП). При возбуждении проводимость постсинаптической мембраны увеличивается.

ТПСП возникает при действии в синапсах глицина, гамма-аминомасляной кислоты. Вместе с тем, тормозной синапс может иметь тот же медиатор, что и возбуждающий, но иную природу рецепторов постсинаптической мембраны. Так, для ацетилхолина, биогенных аминов и аминокислот на постсинаптической мембране разных синапсов могут существовать как минимум два типа рецепторов, и, следовательно, разные медиатор-рецепторные комплексы способны вызывать различную реакцию хемочувствительных рецептор управляемых каналов.

В зависимости от природы медиатора потенциал покоя мембраны может снижаться (деполяризация), что характерно для возбуждения, или повышаться (гиперполяризация), что типично для торможения. Величина ВПСП зависит от количества выделившегося медиатора и может составлять 0,12—5,0 мВ. Под влиянием ВПСП деполяризуются соседние с синапсом участки мембраны, затем деполяризация достигает аксонного холмика нейрона, где возникает возбуждение, распространяющееся на аксон.

В тормозных синапсах этот процесс развивается следующим образом: аксонное окончание синапса деполяризуется, что приводит к появлению слабых электрических токов, вызывающих мобилизацию и выделение в синаптическую щель специфического тормозного медиатора.Он изменяет ионную проницаемость постсинаптической мембраны таким образом, что в ней открываются поры диаметром около 0,5 нм. Эти поры не пропускают ионыNa+ (что вызвало бы деполяризацию мембраны), но пропускают ионы К+ из клетки наружу, а ионы хлора внутрь клетки, в результате чего происходит гиперполяризация постсинаптической мембраны.

Увеличение частоты нервных импульсов, приходящих к тормозному синапсу, также как и в возбуждающих синапсах, вызывает нарастание числа квантов тормозного медиатора, выделяющихся в синаптическую щель, что, соответственно, повышает амплитуду гиперполяризационного ТПСП. Вместе с тем, ТПСП не способен распространяться по мембране и существует только локально.

В результате ТПСП уровень мембранного потенциала удаляется от критического уровня деполяризации и возбуждение становится либо вообще невозможным, либо для возбуждения требуется суммация значительно больших по амплитуде ВПСП, т.е. наличие значительно больших возбуждающих токов. При одновременной активации возбуждаюших и тормозных синапсов резко падает амплитуда ВПСП, так как деполяризующий поток ионов Na+ компенсируется одновременным выходом ионов К+ в одних видах тормозных синапсов или входом ионов Сl- в других, что называют шунтированием ВПСП.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 7

Часто стимулы, поступающие к нервному волокну по одному, возбуждают гораздо большее число нервных волокон. Этот феномен называют дивергенцией. Благодаря дивергенции одна и та же нервная клетка может принимать участие в организации различных реакций и контролировать большое количество нейронов. Одновременно каждый нейрон может обеспечивать широкое перераспределение импульсов, что ведет к иррадиации возбуждения(активное распространение возбуждения в ЦНС, особенно при сильном и длительном раздражении). Конвергенция и дивергенция взаимно связаны.Существуют два основных типа дивергенции, функциональная роль которых различна.

Расходящийся тип дивергенции, при котором происходит распространение действия входящего сигнала на все большее количество нейронов по мере того, как сигнал проходит через последовательный ряд нейронов. Такой тип дивергенции характерен для кортикоспинального тракта, управляющего скелетными мышцами. При этом одна большая пирамидная клетка в двигательной области коры большого мозга при чрезвычайно облегченных условиях способна возбудить до 10000 мышечных волокон.Второй тип дивергенции, приводит к расхождению нервных путей с образованием многочисленных трактов. В данном случае сигнал передается в двух направлениях от пула(несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул). Например, информация, передаваемая в восходящем направлении по задним столбам спинного мозга, в нижней части головного мозга направляется двумя разными путями: (1) в мозжечок; (2) через нижние области головного мозга к таламусу и коре большого мозга. Аналогично в таламусе почти вся сенсорная информация передается одновременно в еще более глубокие структуры самого таламуса и различные области коры большого мозга.

На каждом из нейронов ЦНС конвергирует (сходятся) различные афферентные волокна.Таких афферентных входов для большинства нейронов много десятков и даже тысяч. Так, на мотонейронах заканчиваются в среднем 6000 коллатералей аксонов, которые поступают от периферических рецепторов и различных структур мозга, образуя возбуждающие и тормозные синапсы. Это такое универсальное явление, можно говорить о принципе конвергенции в нейронах и их связях. Благодаря этому явлению в один и тот же нейрон одновременно поступают многочисленные и разнообразные потоки возбуждений, которые затем подлежат сложной обработке и перекодируются и формируются в единое возбуждение - аксону, что идет к следующему звену нервной сетки. Конвергенция возбуждения на нейроне является универсальным фактором его интегративной деятельности.

Конвергенция означает объединение сигналов множественных входов на одном нейроне. Это значит, что на одном нейроне заканчиваются многочисленныетерминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня,необходимого для его возбуждения.

Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников, как показано на рисунке. Например, на вставочных нейронах спинного мозга конвергируют сигналы от: (1) периферических нервных волокон, входящих в спинной мозг; (2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому; (3) кортикоспинальных волокон из коры большого мозга; (4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

Относительная конвергенция - в спинном и стволовом мозге - конвергенция импульсов от различных рецепторных полей одного и того же рефлекса. Абсолютная конвергенция - в коре головного мозга имеются полимодальные (полисенсорные) нейроны, к ним сходятся импульсы от различных рецепторов. Принцип конвергенции обеспечивается за счет изменения частотных характеристик нервных импульсов, идущих от объединяющего нейрона.

Различают мультисенсорную, мультибиологическую и сенсорно-биологическую формы конвергенции. В первом случае на нейрон поступают сигналы различной сенсорной модальности (зрительные, слуховые, болевые и др.), во втором - потоки возбуждений различной биологической модальности (пищевые, половые и др.), в третьем - сигнализация (зрительная, пищевая) и другие.

Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция — один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 8

Пространственная суммация. Это явление, в результате которого происходит увеличение силы сигнала, передается путем вовлечения в его передачу все большего числа сенсорных волокон. Совокупность таких рецепторов, сформированная одним болевым волокном, часто охватывает область кожи размером до 5 см в диаметре. Эту область называют рецепторным полем данного волокна. Количество окончаний в центре поля велико, но уменьшается к периферии.Разветвления разных болевых волокон частично перекрываются в пространстве, поэтому булавочный укол кожи обычно одновременно стимулирует окончания многих волокон. Поскольку число свободных окончаний отдельного болевого волокна в середине его рецепторного поля намного больше, чем на периферии, булавочный укол в центре поля стимулирует это волокно в гораздо большей степени, чем такой же укол на периферии.

Временная суммация. Вторым способом передачи сигналов возрастающей силы является увеличение частоты нервных импульсов в каждом волокне, которое называют временной суммацией.

Большое значение в координации процессов в ЦНС имеет временное и пространственное облегчение (или суммация). Временное облегчение проявляется в повышении возбудимости нейронов в ходе последовательных ВПСП в результате ритмических стимуляций нейрона. Это вызвано тем, что длительности ВПСП продолжаются дольше, чем рефрактерный период аксона. Пространственное облегчение в нервном центре наблюдается при одновременной стимуляции, например, двух аксонов. При раздельной стимуляции каждого из аксонов возникают подпороговые ВПСП в определенной группе нейронов в нервном центре. Совместное раздражение этих аксонов дает большее количество нейронов с надпороговым возбуждением (возникает ПД).

Кратко:Временное и пространственное облегчение – это усиление рефлекторной реакции при действии ряда последовательных раздражителей или одновременном их воздействии на несколько рецептивных полей. Объясняется явлением суммации в нервных центрах.

Противоположное облегчению в ЦНС существует явление окклюзии. Окклюзия – это взаимодействие двух потоков возбуждения между собой.Впервые окклюзия была описана Ч. Шеррингтоном. Сущность окклюзии заключается во взаимном угнетении рефлекторных реакций, при котором суммарный эффект оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч. Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих реакций. В связи с этим при поступлении двух афферентных посылок ВПСП вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга. Окклюзия используется в электрофизиологических экспериментах для определения общего звена для двух путей распространения импульсов.

Кратко:Окклюзия явление противоположное облегчению. Когда рефлекторная реакция на два или более сверхпороговых раздражителя меньше, чем ответы на их раздельное воздействие. Оно связано с конвергенцией нескольких возбуждающих импульсов на одном нейроне.

Еще раз:Центральное облегчение - объясняется особенностями строения нервного центра. Каждое афферентное волокно, входя в нервный центр, иннервирует определенное количество нервных клеток. Эти нейроны -нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле - 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

Окклюзия - при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) - появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) - возникает явление окклюзии.

Свойство облегчения проведения и окклюзии нервного импульса — результат конвергенции (схождения) нервных импульсов от разных аксонов к одной нервной клетке.Для генерации нервного импульса может быть недостаточно возбуждения, поступающего к нервной клетке по отростку одного аксона. В этом случае возбуждение от другого аксона, поступающее к той же нервной клетке, облегчает генерацию нервного импульса.

К нервной клетке могут подходить несколько аксонов и каждый из них в отдельности может вызвать возбуждение. При одновременном их возбуждении некоторые сигналы, направляющиеся к нервной клетке, оказываются закупоренными, не находящими выхода на эффекторный аппарат. Разумеется, это лишь общая схема возможного взаимодействия возбуждении, поступающих от разных нервных проводников к одной нервной клетке. В действительности же, когда к одной клетке сходятся возбуждающие или тормозные влияния сотен и тысяч нервных отростков, суммация и окклюзия становятся чисто статистическими явлениями.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 9

Тормозные цепи, виды торможения. Торможение, как и возбуждение, - активный процесс, оно возникает в результате сложных физико-химических изменений в тканях. Благодаря процессу торможения достигается ограничение распространения возбуждения в ЦНС и обеспечивается координация рефлекторных актов, внешне этот процесс проявляется ослаблением функции какого-либо органа.

Открытие торможения в ЦНС было сделано основоположником русской физиологии И. М. Сеченовым. В 1862 г. Им были проведены классические опыты, получившие название «центральное торможение». И. М. Сеченов на зрительные бугры лягушки, отделенные от больших полушарий головного мозга, помещал кристаллик хлорида натрия (поваренная соль) и наблюдал при этом увеличение времени спинномозговых рефлексов. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результаты этого опыта позволили И. М. Сеченову сделать заключение о том, что в центральной нервной системе наряду с процессом возбуждения развивается и процесс торможения, способный угнетать рефлекторные акты организма.

К настоящему времени анализ тормозных явлений в ЦНС позволил выделить две формы разновидности торможения: постсинаптическое и пресинаптическое.

Постсинаптическое торможение развивается на постсинаптических мембранах межнейронных синапсов и связано с гиперполяризацией постсинаптической мембраны под влиянием медиаторов, которые выделяются при возбуждении специальных тормозных нейронов. При этом локально возникающая на постсинаптической мембране гиперполяризация - тормозной постсинаптический потенциал (ТПСП) – затрудняет электротоническое распространение возбуждающих постсинаптических потенциалов (ВПСП) от других синапсов, к аксонному холмику. В результате в зоне аксонного холмика не происходит выведение мембранного потенциала на критический уровень. Потенциал действия не образуется, нейрон не возбуждается.

Постсинаптическое торможение активно используется в нейронных сетях, и в зависимости от вариантов связывания нейронов друг с другом выделяют несколько его видов: реципрокное (прямое), параллельное, возвратное, латеральное.

Рис. 3. Разновидности постсинаптического торможения: А – реципрокное, Б – возвратное, В – параллельное, Г- латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

Реципрокное торможение – это взаимное (сопряженное) торможение центров антагонистических рефлексов, обеспечивающее координацию этих рефлексов. Классический пример реципрокного торможения - это торможение мотонейронов мышц-антагонистов у позвоночных. Торможение осуществляется с помощью специальных тормозных вставочных нейронов. При активации путей, возбуждающих, например, мотонейроны мышц-сгибателей, мотонейроны мышц-разгибателей тормозятся импульсами вставочных клеток.

Возвратное торможение - это торможение нейронов собственными импульсами, поступающими по возвратным коллатералям к тормозным клеткам. Возвратное торможение наблюдается, например, в мотонейронах спинного мозга позвоночных. Эти клетки отдают возвратные коллатерали в мозг к тормозным вставочным клеткам Реншоу, которые имеют синапсы на этих же мотонейронах. Торможение обеспечивает ограничение ритма мотонейронов, позволяющее чередовать сокращение и расслабление скелетной мышцы, что важно для нормальной работы двигательного аппарата.

Параллельное торможение– играет сходную с возвратным роль, но в этом случае возбуждение блокирует само себя, посылая тормозной сигнал на нейрон который одновременно и активирует. Это возможно, если возбуждающий импульс сам не должен вызвать возбуждения на нейроне-мишени, но его роль важна при пространственной суммации, в комбинации с другими сигналами.

Латеральное торможение– это торможение нервных клеток, расположенных по соседству с активной, которое этой клеткой и инициируется. При этом вокруг возбужденного нейрона возникает зона, в которой развивается очень глубокое торможение. Латеральное торможение наблюдается, например, в конкурирующих сенсорных каналах связи. Оно наблюдается у соседних элементов сетчатки позвоночных, а также в их зрительных, слуховых и других сенсорных центрах. Во всех случаях латеральное торможение обеспечивает контраст, т. е. выделение существенных сигналов или их границ из фона.

Пресинаптическое торможениеразвивается в аксо-аксональных синапсах, образованных на пресинаптических окончаниях нейрона.

В основе пресинаптического торможения лежит развитие медленной и длительной деполяризации пресинаптического окончания, что и приводит к развитию торможения. В деполяризованном участке нарушается процесс распространения возбуждения и поступающие к нему импульсы, не имея возможности пройти зону деполяризации в обычном количестве и обычной амплитуде, не обеспечивают выделения достаточного количества медиатора – нейрон не возбуждается.

Деполяризацию пресинаптическойтерминали вызывают специальные тормозные вставочные нейроны, аксоны которых и образуют синапсы на пресинаптических окончаниях аксона-мишени.

Разновидности пресинаптического торможения изучены недостаточно, вероятно они те же, что и для постсинаптического торможения. Точно известно о наличии параллельного и латерального пресинаптического торможения (рис. 4).

Рис. 4. Разновидности пресинаптического торможения: А – параллельное, Б – латеральное. Темные нейроны – возбуждающие, светлые – тормозные.

В реальной действительности взаимоотношения возбуждающих и тормозных нейронов значительно сложнее, чем представлено на рисунках, тем не менее, все варианты пре- и постсинаптического торможения можно объединить в две группы. Во-первых, когда блокируется собственный путь самим распространяющимся возбуждением с помощью вставочных тормозных клеток (параллельное и возвратное торможение), во-вторых, когда блокируются другие нервные элементы под влиянием импульсов от соседних возбуждающих нейронов с включением тормозных клеток (латеральное и прямое торможение).

Кроме того, тормозные клетки сами могут быть заторможены другими тормозными нейронами, это может облегчить распространение возбуждения.

Роль процесса торможения. Оба известных вида торможения со всеми их разновидностями выполняют, прежде всего, охранительную роль. Отсутствие торможения привело бы к истощению медиаторов в аксонах нейронов, утомлению, истощению и прекращению деятельности ЦНС. Торможение играет важную роль в обработке поступающей в ЦНС информации. Особенно ярко выражена эта роль у пресинаптического торможения. Оно более точно регулирует процесс возбуждения, поскольку этим торможением могут быть полностью заблокированы отдельные нервные волокна. К одному возбуждающему нейрону могут приходить сотни и тысячи различных импульсов по разным путям, но число дошедших до нейрона импульсов определяется пресинаптическим торможением. Поскольку блокада торможения ведет к широкой иррадиации возбуждения и судорогам, следует признать, что торможение является важным фактором обеспечения координационной деятельности ЦНС.

Усиливающие цепи и механизмы усиления.Нейронные сети имеют не только тормозные механизмы, препятствующие распространению возбуждения, но и системы, усиливающие приходящий к ним сигнал.

Самовозбуждающиеся нервные цепи(цепи с положительной обратной связью) (рис.5). Некоторые данные свидетельствуют о том, что в мозгу животных и человека существуют замкнутые самовозбуждающиеся цепочки нейронов, в которых нейроны соединены синапсами возбуждающего действия. Возникнув в ответ на внешний сигнал, возбуждение в такой цепочке циркулирует, иначереверберирует, до тех пор, пока или какой-либо внешний тормоз не выключит одно из звеньев цепи, или в ней не наступит утомление. Выходные пути от такой цепочки (ответвляющиеся по коллатералям аксонов нервных клеток - участников цепи) во время работы передают равномерный поток импульсов, создающий ту или иную настройку в нервных клетках-мишенях. Ее функции могут состоять в том, чтобы обеспечивать длительное поддержание индуцированной однажды активности.

 
 

Рис.5. Самовозбуждающаяся нервная цепочка

Таким образом, самовозбуждающаяся цепочка, пока она работает, как бы «помнит» тот краткий сигнал, который включил в ней циркуляцию (реверберацию) импульсов. Считают, что это возможный механизм (или один из механизмов) краткосрочной памяти, однако этому практически нет экспериментальных доказательств.

Синаптическаяпотенциация — увеличение амплитуды постсинаптического потенциала, если интервал между последовательным возникновением потенциалов действия в пресинаптической мембране невелик, то есть происходит частая и ритмическая активация синапса. Явление потенциации связывают с накоплением ионов кальция в пресинаптическом окончании, который дополнительно вбрасывается туда при каждом новом стимуле и не успевает полностью удаляться между частыми стимулами. Вследствие этого, каждый новый пресинаптический потенциал вызывает высвобождение большего числа квантов медиатора.

Такую же природу имеет и посттетаническаяпотенциация. В этом случае увеличение числа квантов медиатора, высвобождаемых нервным импульсом, после предшествующего ритмического раздражения приводит к увеличению синаптической реакции нейрона на одиночное раздражение пресинаптических путей. Посттетаническаяпотенциация может длиться от нескольких минут до нескольких часов в различных структурах мозга. Предполагают, что постсинаптическая потенциация играет важную роль в пластических перестройках функций синапсов, и лежит в основе механизмов организации условных рефлексов и памяти. Например, особенно длительная посттетаническая потенциация обнаружена в гиппокампе – структуре, которая, играет важную роль в явлениях памяти и научения.

Ритмическая стимуляция может приводить и к снижению активности синапсов. Процесс снижения постсинаптических потенциалов во время или по окончании тетанической стимуляции по сравнению с исходной амплитудой называется синаптической депрессией; по аналогии с потенциацией, различают тетаническую и посттетаническую депрессию. Возможно, синаптическая депрессия имеет место во многих участках нервной системы и является нейронным коррелятом привыкания (габитуации). У беспозвоночных габитуация простых поведенческих реакций прямо соответствует депрессии участвующих синапсов; то же самое относится и к флексорному рефлексу у кошки. Таким образом, синаптическая депрессия, так же как синаптическаяпотенциация, составляет элементарный процесс научения.

80. Гипоталамо-гипофизарная система +

81. Антидиуретический гормон, окситоцин. Статины и либерины.

Важную роль в регуляции функций эндокринных желез играет гипоталамо-гипофизарная система. Функция большинства желез внутренней секреции регулируется гормонами передней доли гипофиза (аденогипофиза). На высвобождение этих гормонов в свою очередь влияют гормоны нейронов гипофизотропной зоны медиальной области гипоталамуса, которые оказывают либо стимулирующее, либо тормозное действие на гипофиз и называются соответственно рилизинг-факторы и ингибирующие факторы. Рилизинг-факторы высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную систему с кровью поступают к аденогипофизу. Принцип регуляции заключается в том, что при повышении содержания в плазме гормонов периферических эндокринных желез уменьшается выброс соответствующего рилизинг-фактора в кровеносные сосуды медиальной области гипоталамуса. Регуляция по принципу отрицательной обратной связи, в которой участвуют медиальный гипоталамус, гипофизи периферические эндокринные железы , действует даже в отсутствии влияний со стороны ЦНС . Регуляция сохраняется после полного отделения медиальной области гипоталамуса от остальных отделов ЦНС. Роль ЦНС заключается в приспособлении этой регуляции к внутренним и внешним потребностям организма. Например, при стрессе возрастает секреция кортизола корой надпочечников в результате того, что увеличивается активность нейронов медиальной области гипоталамуса, что ведет к усиленному выделению рилизинг-фактора в срединном возвышении.

В клетках и ядрах гипоталамуса выделяются:

· Гипоталамические гормоны – либерины и статины, которые регулируют гормонпродуцирующую функцию гипофиза.

· Тиреолиберин – стимулирует выработку тиротропина в гипофизе.

· Гонадолиберин – стимулирует выработку в гипофизе гонадотропных гормонов.

· Кортиколиберин – стимулирует выработку в гипофизе кортикотропина.

· Соматолиберин – стимулирует выработку в гипофизе гормона роста – соматотропина.

· Соматостатин – угнетает выработку в гипофизе гормона роста.

Гипофиз расположен на основании головного мозга и прикрепляется к мозгу тонким стеблем. По этому стеблю гипофиз связан с гипоталамусом. Гипофиз состоит из передней и задней долей. Промежуточная доля у человека недоразвита. В передней доле гипофиза, ее называют аденогипофиз, производится шесть собственных гормонов. В задней доле гипофиза, называемой нейрогипофиз, накапливаются два гормона гипоталамуса – окситоцин и вазопрессин.

Гормоны, которые производит передняя доля гипофиза:

· Пролактин. Этот гормон стимулирует лактацию (образование материнского молока в молочных железах).

· Соматотропин или гормон роста – регулирует рост и участвует в обмене веществ.

· Гонадотропины – лютеинизирующий и фолликулостимулирующий гормоны. Они контролируют половые функции у мужчин и женщин.

· Тиротропин. Тиротропный гормон регулирует работу щитовидной железы.

· Адренокортикотропин. Адренокортикотропный гормон стимулирует выработку глюкокортикоидных гормонов корой надпочечников.

Соматотропин. или гормон роста, обусловливает рост костей в длину, ускоряет процессы обмена веществ, что приводит к уси­лению роста, увеличению массы тела. Недостаток этого гормона проявляется в малорослости (рост ниже 130 см), задержке поло­вого развития; пропорции тела при этом сохраняются.

Избыток гормонов роста в детском возрасте ведет к гигантиз­му. В медицинской литературе описаны гиганты, имевшие рост 2 м 83 см и даже более (3 м 20 см). Гиганты характеризуются длинными конечностями, недостаточностью половых функций, по­ниженной физической выносливостью.

Иногда избыточное выделение гормона роста в кровь начина­ется после полового созревания, т. е. когда эпифизарные хрящи уже окостенели и рост трубчатых костей в длину уже невозможен. Тогда развивается акромегалия: увеличиваются кисти и стопы, кости лицевой части черепа (они окостеневают позже), усиленно растут нос, губы, подбородок, язык, уши, голосовые связки утол­щаются, отчего голос становится грубым; увеличивается объем сердца, печени, желудочно-кишечного тракта.

Адренокортикотропный гормон (АКТГ) оказывает влияние на деятельность коры надпочечников. Увеличение количества АКТГ в крови вызывает гиперфункцию коры надпочечников, что при­водит к нарушению обмена веществ, увеличению количества саха­ра в крови. Развивается болезнь Иценко—Кушинга с характер­ным ожирением лица и туловища, избыточно растущими волосами на лице и туловище; нередко при этом у женщин растут борода и усы; повышается артериальное давление; разрыхляется костная ткань, что ведет подчас к самопроизвольным переломам костей.

В аденогипофизе образуется также гормон, необходимый для нормальной функции щитовидной железы (тиреотропин). Тиреотропин, воздействуя на специфические рецепторы в щитовидной железе, стимулирует выработку и активацию тироксина. Он активирует аденилатциклазу и увеличивает потребление йода клетками железы. Последующее увеличение уровня сАМР обусловливает действие ТТГ на биосинтез трийодтиронина (Т3) и тироксина (Т4) (синтез длится около минуты), которые являются важнейшими гормонами роста.

Несколько гормонов передней доли гипофиза оказывают влия­ние на функции половых желез. Это гонадотропные гормоны. Одни из них стимулируют рост и созревание фолликулов в яични­ках (фолитропин), активируют сперматогенез. Под влиянием лю­тропина у женщин происходит овуляция и образование желтого тела; у мужчин он стимулирует выработку тестостерона. Пролак­тин оказывает влияние на выработку молока в молочных желе­зах; при его недостатке продукция молока снижается.

Из гормонов промежуточной доли гипофиза наиболее изучен меланофорный гормон, или меланотропин, регулирующий окраску кожного покрова. Этот гормон действует на клетки кожи, содер­жащие зернышки пигмента. Под влиянием гормона эти зернышки распространяются по всем отросткам клетки, вследствие чего ко­жа темнеет. При недостатке гормона окрашенные зернышки пиг­мента собираются в центре клеток, кожа бледнеет.

Во время беременности в крови содержание меланофорного гормона увеличивается, что вызывает усиленную пигментацию от­дельных участков кожи (пятна беременности).

Под влиянием гипоталамуса из задней доли гипофиза выде­ляются гормоны антидиуретин, или вазопрессин, и окситоцин. Окситоцин стимулирует гладкую мускулатуру матки при родах. Он также оказывает стимулирующее влияние на выделение мо­лока из молочных желез.

Наиболее сложным действием обладает гормон задней доли гипофиза, названный антидиуретическим (АДГ); он усиливает об­ратное всасывание воды из первичной мочи, а также влияет на солевой состав крови. При уменьшении количества АДГ в крови наступает несахарное мочеизнурение (несахарный диабет), при котором в сутки отделяется до 10—20 л мочи. Вместе с гормо­нами коры надпочечников АДГ регулирует водно-солевой обмен в организме.

82. Надпочечники. Гормоны надпочечников

Надпочечники состоят из:

· мозгового (внутреннего слоя)

· коркового вещества или коры надпочечников.

Размеры надпочечника у взрослого человека 4х2х0,3 см. Вес надпочечника от 6 до 7 г.

Надпочечникиэто эндокринные железы, которые расположены над верхним полюсом каждой почки. Верхняя часть коры надпочечника представляет собой клубочковую зону. В ней образуются минералокортикоиды – альдостерон.Большую часть коры надпочечников занимает пучковая зона. В пучковой зоне происходит синтез глюкокортикоидов.

Внутренний слой коры надпочечника называется сетчатой зоной и синтезирует половые гормоны.Во внутреннем, мозговом слое надпочечника содержатся яадреналин и норадреналин.Гормоны, продуцируемые надпочечниками называются кортикостероиды. Все они синтезируются из холестерина. Скорость синтеза гормонов и их выделение в кровь контролируется гормоном гипофиза адренокортикотропином.

Глюкокортикоиды.Основным глюкокортикоидом в организме человека является кортизол, который синтезируется в пучковой зоне надпочечника. Менее активные глюкокортикоиды:

· кортизон

· кортикостерон

· 11- дезоксикортизол

· 11- дегидрокортикостерон.

Транспортируются по крови глюкокортикоиды при помощи специальных белков-переносчиков. Выводятся из организма в основном печенью. Глюкокортикоиды принимают участие в регуляции обмена веществ в организме. Они увеличивают распад белка, повышают концентрацию глюкозы в крови, уменьшают образование жиров и изменяют распределение жировой клетчатки в организме, увеличивая количество свободных жиров в крови.

Глюкокортикоидыоказывают противовоспалительное действие, снижая все компоненты воспалительных реакций в организме. Влияют на иммунитет. Они участвуют в регуляции уровня артериального давления, активируют работу почек. При избытке глюкокортикоидов возникает атрофия лимфатических узлов. Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процессы образования глюкозы из белков (глюконеогенез), а также откладывание гликогена в печени, являются антагонистами инсулина по регуляции углеводного обмена. ГКС вызывают распад тканевых белков, задерживают включения аминокислот в белки организма и ускоряют процесс выделения азота (катаболический эффект). Глюкокортикоиды способны проявлять противовоспалительное действие. Это связано с тем, что названные гормоны снижают проницаемость стенки сосудов за счет снижения активности фермента гиалуронидазы, блокируют секрецию серотонина и гистамина, кининов и систему плазмин - фибринолизин. Под влиянием глюкокортикоидов производятся липокортины, тормозящие влияние фосфолипазы А2 и тем самым подавляют образование из арахидоновой кислоты простагландинов и лейкотриенов, стимулирующих воспалительный процесс. ГКС осуществляют значительное влияние на клеточный и гуморальный иммунитет. Доказано, что выше (фармакологические) дозы гидрокортизона обусловливают обратное развитие (инволюцию) пидгрудиннои железы и лимфатических узлов, подавляют выработку антител, тормозящие реакцию взаимодействия чужеродного белка (антигена) с антителом. При этом в периферической крови уменьшается количество лимфоцитов и эозинофилов. Именно иммуносупрессорной действие глюкокортикоидов используется для лечения аллергических заболеваний (например, бронхиальной астмы). ГКС с другими гормонами (АКТГ) способствуют адаптации организма к новым условиям существования, а также к воздействию различных неблагоприятных факторов (резко выраженные холод и жара, кислородное голодание, травмы, эмоциональное перенапряжение и т.д.). Поэтому их называют защитными (адаптивными) гормонами.

Минералокортикоиды.К минералокортикоидам относятся:

· альдостерон

· дезоксикортикостерон

· 18- оксикортикостерон.

Наиболее активный из них альдостерон.Он регулирует обратное всасывание воды в канальцах почек, снижает выведение натрия и усиливает выведение калия из организма. Контроль синтеза альдостерона осуществляется ренин-ангиотензиновой системой, уровнем калия в крови и адренокортикотропным гормоном гипофиза. Минералокортикоиды участвуют в регуляции минерального обмена (баланса электролитов). Активным минералокортикоиды является альдостерон. Под его влиянием усиливается реабсорбция Na + в канальцах почек и уменьшается реабсорбция К +, что приводит к задержке Na + и Сl-в организме и увеличение выделения К +, Н +. В отличие от глюкокортикоидов, минералокортикоиды способствуют развитию воспалительных процессов. Это объясняется их способностью к повышению проницаемости капилляров и серозных оболочек. Минералокортикоиды участвуют также в регуляции тонуса кровеносных сосудов. Доказано, что альдостерон повышает тонус сосудов и способствует повышению артериального давления. Избыток альдостерона в организме ведет к повышению содержания натрия и снижение уровня калия, к развитию алкалоза и увеличение объема внеклеточной жидкости. Напротив, недостаточность альдостерона в организме обусловливает потерю натрия, дегидратацию тканей и снижение АД (гипотензия).

В сетчатом слое надпочечников образуются половые гормоны– андрогены, эстрогены и небольшое количество прогестерона. Эти гормоны имеют значение для развития половых органов в раннем детском возрасте и появления вторичных половых признаков в тот период, когда внутренняя секреторная функция половых желез еще незначительна. Кроме специфического воздействия, половые гормоны (эстрогены) оказывают еще и антисклеротическое эффект, прежде у женщин, благодаря высокой их концентрации. Они (особенно андрогены) также способствуют обмену белков, стимулируя их синтез в организме. Вместе с этим половые гормоны влияют на эмоциональный статус и поведение человека.

Катехоламины.В мозговом слое надпочечника образуются катехоламины:

· дофамин

· адреналин

· норадреналин.

Катехоламиныявляются нейромедиаторами, которые служат передатчиками нервного импульса в симпатической нервной системе. Синтез их происходит из аминокислоты тирозина. Катехоламины также принимают участие в регуляции секреции некоторых гормонов в организме, влияют на обмен веществ.

Адреналин обладает широким спектром действия на организм. Он влияет на углеводный обмен, усиливает распад гликогена, вызывая уменьшение его запасов в печени и мышцах (есть в этом антагонистом-инсулина), что приводит к увеличению содержания глюкозы в крови (адреналовая гипергликемия). Адреналин имеет липолитическое действие - повышает содержание свободных жирных кислот в крови. Под влиянием адреналина усиливаются энергетический обмен, в том числе и основной, а также образование тепла.

Адреналин вызывает ускорение и усиление сердечных сокращений, улучшает проведение возбуждения в сердце (особенно сильно адреналин влияет на ослабленную сердечную мышцу), сужает артериолы кожи, органов брюшной полости, повышая артериальное давление. Адреналин подавляет сокращение гладких мышц желудка и кишечника, вызывает при раздражении ослабление бронхиальных мышц, вследствие чего просвет бронхов и бронхиол расширяется. Вместе с тем адреналин вызывает укорочение радиальных мышц радужной оболочки глаза, в результате чего зрачки расширяются. Под влиянием адреналина также сокращаются пиломоторы кожи, что приводит к появлению так называемой гусиной кожи и поднятия волос. Под влиянием адреналина повышается работоспособность скелетных мышц (особенно, если они устали), возбудимость рецепторов (сетчатки, слухового и вестибулярного аппарата и др.), благодаря чему улучшается восприятие организмом внешних стимулов. При некоторых состояниях организма (охлаждение, эмоциональное возбуждение, кровопотеря, кислородный голод, гипогликемия и др.). Резко увеличиваются образование и выделение адреналина в кровь. Поэтому адреналин образно называют «гормоном тревоги», который препятствует возникновению значительных, опасных для жизни изменений в организме. Возбуждение симпатической нервной системы сопровождается повышением поступления в кровь адреналина и норадреналина. Эти катехоламины продлевают эффекты симпатической нервной системы. Итак, на функции органов и систем адреналин влияет так же, как симпатическая нервная система.

Адреналин в крови и тканях быстро разрушается под действием ферментов. При этом образуются продукты, которые не являются гормонально активными. Поэтому адреналин относят к гормонам с коротким периодом действия.

Таким образом, адреналин играет важную роль в приспособительных, защитных реакциях организма, может вызывать экстренную перестройку функций, направленную на повышение работоспособности организма в чрезвычайных условиях.

Норадреналин имеет признаки гормона и медиатора (трансмиттера), так выполняет функции передатчика возбуждения симпатических нервных окончаний на эффектор, а также в нейронах ЦНС.

83. Половые железы. Гормоны половых желез.

Половые железы (семенные железы у мужчин и яичники у женщин) относятся к железам, имеющие смешанную функцию. За счет внешнесекреторной функции этих желез образуются мужские и женские половые клетки - сперматозоиды и яйцеклетки. Инкреторная функция проявляется образованием и выделением мужских и женских половых гормонов, которые непосредственно поступают в кровь.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 10

Половые гормоны делятся на мужские и женские. К мужским гормонам относятся андрогены, основным представителем которых является тестостерон, и незначительное количество эстрогенов, образующихся в результате метаболизма андрогенов. К женским гормонам относятся эстрогены, прогестины (эстрадиол, эстрон, прогестерон), а также андрогены в низкой концентрации. То есть в организме мужчин и женщин вырабатываются одни и те же гормоны, но в разных количествах.

Эстрогены и прогестины синтезируются в яичниках клетками желтого тела и в плаценте, андрогены - в яичке интерстициальными клетками.

Развитие половых желез и поступление в кровь производимых ими половых гормонов определяет половое развитие и созревание.

Андрогены нужны для нормального созревания сперматозоидов, сохранения их двигательной активности, выявления и осуществления половых поведенческих реакций. Они в значительной степени влияют на обмен веществ, обладают анаболическим действием - усиливают синтез белка в различных тканях, особенно в мышцах; уменьшают содержание жира в органах, повышают основной обмен. Андрогены влияют на функциональное состояние ЦНС, высшую нервную деятельность.

К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона опре­деляет адекватное развитие мужских первичных и вторичных по­ловых признаков (маскулинизирующий эффект). Под влиянием те­стостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, ме­няется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тесто­стерон влияет на процессы формирования костного скелета — он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.

Эстрогены стимулируют рост яйцевода, матки, влагалища, разрастание внутреннего слоя матки - эндометрия, способствуют развитию вторичных женских половых признаков и проявления половых рефлексов. Кроме того, эстрогены ускоряют и усиливают сокращение мышц матки, повышают чувствительность матки к гормону нейрогипофиза - окситоцина. Они стимулируют развитие и рост молочных желез.

Физиологическое значение прогестерона заключается в том, что он обеспечивает нормальное течение беременности. Под его воздействием происходит разрастание слизистой оболочки (эндометрия) матки, это способствует имплантации оплодотворенной яйцеклетки в матке. Прогестерон создает благоприятные условия для развития вокруг имплантированной яйцеклетки децидуальной ткани, поддерживает нормальное течение беременности за счет торможения сокращений мышц беременной матки и уменьшает чувствительность матки к окситоцину. Кроме того, прогестерон тормозит созревание и овуляцию фолликулов вследствии угнетения создания гормона лютропина аденогипофизом.

Клетки желтого тела яичников, кроме продукции стероидных гормонов, синтезируют белковый гормон релаксин. Усиленная секреция релаксина начинается на поздних стадиях беременности. Значение этого пептидного гормона состоит в ослаблении (релаксации) связки лобкового симфиза с другими тазовыми костями, механизм которого связан с увеличением уровня цАМФ в хондроцитах. Это приводит к распаду молекулярных компонентов их связи. Кроме того, под влиянием релаксина снижаются тонус матки и ее сократимость, особенно шейки. Таким образом, этот гормон готовит организм матери к предстоящим родам.

Гормоны плаценты

Плацента осуществляет связь материнского организма с плодом, является одновременно легкими, кишками, печенью, почками и эндокринной железой для плода. Она имеет три основные структуры: хорионального, базальную мембрану и расположенную между ними паренхиматозную часть состоит из ворсин хориона, стволовой части и микроворсинчастого пространства.

Плацента выполняет много различных функций, в том числе метаболическую (образование ферментов, участие в расщеплении белков, жиров и углеводов) и гормональную (образует две группы гормонов - белковые и стероидные). Белковыми гормонами являются хорионический гонадотропин, плацентарный лактогенный гормон (соматомамотропин) и релаксин. К стероидным гормонам плаценты относятся прогестерон и эстрогены (эстриол). В плаценте выявлены также гипоталамические рилизинг-гормоны.

Хорионический гонадотропин - глюкопротеид, образующийся синцитиальным клетками трофобласта плаценты. Максимальная секреция наблюдается на 7-12-й неделе беременности. Позже продукция гормона снижается в несколько раз. Хорионический гонадотропин переходит в кровь матери. Транспорт его в организм плода ограничен. Поэтому концентрация гормона в крови матери в 10-20 раз превышает его содержание в крови плода. Физиологическая роль хорионического гонадотропина заключается в его лютеинизирующем действии, то есть он влияет подобно лютеинизирующему гормону (лютропину) аденогипофиза. Хорионический гонадотропин стимулирует рост фолликулов яичников, вызывает овуляцию зрелых фолликулов, способствует образованию желтого тела в яичниках. Кроме того, гормон дает стероидный эффект - стимулирует образование прогестерона в желтом теле яичников.

Отмечаются защитная функция гормона и его способность предотвращать отслойке зародыша. Хорионический гонадотропин имеет также антиалегрическое действие.

Плацентарный лактогенный гормон (соматомамотропин) - белковый гормон плаценты. Его секреция начинается с 6-й недели беременности. Затем его продукция прогрессивно увеличивается и в конце беременности достигает максимального уровня (до 1 г в сутки). В небольшом количестве гормон проникает через плацентарный барьер в кровь плода. Физиологическая роль гормона заключается прежде всего в его способности влиять на молочные железы беременной (подобное влияние оказывает пролактин аденогипофиза). Кроме того, плацентарный лактогенный гормон влияет на процессы метаболизма как в материнском организме, так и в организме плода. Метаболическое действие гормона связано с его способностью влиять на белковый обмен, что проявляется повышением синтеза белка и усилением задержки азота в организме матери. Одновременно в крови увеличивается содержание свободных жирных кислот, повышается устойчивость организма к гипогликемическому действию инсулина. Стероидные гормоны плаценты. Прогестерон активно образуется в плаценте на 5-7-й неделе беременности. Со временем его продукция прогрессивно нарастает (в 10 раз). Гормон поступает в больших количествах в кровь матери и плода. Он вызывает ослабление мышц матки, снижает ее сократимость, чувствительность к эстрогенам и окситоцину, способствует накоплению воды и электролитов (особенно натрия) в тканях матки и во всем организме беременной. Вместе с эстрогенами прогестерон способствует росту и растяжении матки, а также, развитию молочных желез, готовя их к последующей лактации.

84. Щитовидная железа. Гормоны щитовидной железы.

Щитовидная железа состоит из двух частей, расположенных по обеим сторонам трахеи.. Ткань железы каждой частицы состоит из многочисленных фолликулов, полости которых заполнены густой, вязкой желтоватого цвета массой - коллоидом, образованным главным образом тиреоглобулином - основным белком, который содержит йод. В коллоиде также мукополисахариды и нуклеопротеиды - протеолитические ферменты, которые относятся к катепсин, и другие вещества. Производится коллоид эпителиальными клетками фолликулов и непрерывно поступает в их полость, где концентрируется. Количество коллоида и его консистенция зависят от фазы секреторной деятельности и могут быть различными в разных фолликулах одной железы.

Щитовидная железа секретирует йодированные гормоны — тироксин (Т4) и три-йодтиронин (Т3), а также нейодированный гормон — тиреокальцитонин.

Основными компонентами для образования гормонов служат йод и аминокислота тирозин. Йод поступает в организм с пищей, водой, воздухом в виде органических и неорганических соединений. Баланс йода в организме подвержен значительным колебаниям. Избыточное количество йода выделяется из организма с мочой.(98%) и желчью (2%).

В крови органические и неорганические соединения йода образуют йодиды калия и натрия. Под действием окислительных ферментов пероксидазы и цитохро-моксидазы йодиды превращаются в элементарный йод. В щитовидной железе начи­нается присоединение йода к белку (органификация). Атомы йода включаются в тирозил (остаток аминокислоты тирозина). Йодированные тирозины МИТ и ДИТ (монойодтирозин и дийодтирозин) не обладают гормональной активностью, но являются субстратом для образования йодированных тиреоидных гормонов: тирок­сина (Т4—тетрайодтиронин) и трийодтиронина (Тз).

Трийодтиронин в 5—6 раз превосходит тироксин по активности и в 2—3 раза по скорости кругооборота в организме, образование его происходит в основном не в щитовидной железе, а в периферических тканях и осуществляется путем частич­ного дейодирования тироксина, теряющего один атом йода. Тироксин, поступивший из щитовидной железы в сосудистое русло, связывается с белками сыворотки, вследствие чего концентрация протеинсвязанного йода в крови часто используется как показатель секреторной активности щитовидной железы.

Физиологические эффекты йодированных гормонов щитовидной железы. Названные гормоны влияют на морфологию и функции органов и тканей: рост и развитие организма, на все виды обмена веществ, активность ферментных систем, на функции ЦНС, высшую нервную деятельность, вегетативные функции организма.

Влияние на рост и дифференциацию тканей. При удалении щитовидной железы у экспериментальных животных и при гипотиреозе у людей молодого возраста наблюдаются задержка роста (карликовость) и развития почти всех органов, в том числе половых желез, замедление полового созревания (кретинизм). Недостаток тиреоидных гормонов у матери неблагоприятно сказывается на процессах дифференциации зародыша, в частности его щитовидной железы. Недостаточность процессов дифференциации всех тканей и особенно ЦНС вызывает ряд тяжелых нарушений психики.

Влияние на обмен веществ. Тиреоидные гормоны стимулируют обмен белков, жиров, углеводов, водный и электролитный обмен, обмен витаминов, теплопродукции, основной обмен. Они усиливают окислительные процессы, процессы поглощения кислорода, расхода питательных веществ, потребление тканями глюкозы. Под влиянием этих гормонов уменьшаются запасы гликогена в печени, ускоряется окисления жиров. Усиление энергетических и окислительных процессов является причиной похудения, наблюдается при гиперфункции щитовидной железы.

Влияние на ЦНС. Гормоны щитовидной железы необходимы для развития мозга. Влияние гормонов на ЦНС проявляется изменением условнорефлекторной деятельности, поведения. Повышенная их секреция сопровождается повышенной возбудимостью, эмоциональностью, быстрым истощением. При гипотиреоидная состояниях наблюдаются обратные явления - слабость, апатия, ослабление процессов возбуждения.

Гормон щитовидной железы тиреокальцитонин совместно с паратгормоном паращитовидных желез регулирует обмен кальция и фосфора.

85. Поджелудочная железа. Гормоны поджелудочной железы.

Поджелудочная железа (Pancreas) — железа двойной функции: внешнесекреторной и внутрисекреторной. Внешнесекреторная функция заключается в синтезе и выделении в двенадцатиперстную кишку сока, содержащего пищеварительные ферменты и электролиты, внутрисекреторная — в синтезе и выделении в кровь гормонов.

Внешнесекреторная часть железы сильно развита и составляет более 95 % ее массы. Она имеет дольчатое строение и состоит из альвеол (ацинусов) и выводных протоков. Основная масса ацинусов (железисто-пузырьковидные концевые отделы) представлена панкреатическими клетками — панкреацитами — секретируемыми клетками.

Внутрисекреторная часть железы представлена островками Лангерганса, которые составляют около 30 % массы железы. Различают несколько видов островков Лангерганса по способности секретировать полипептидные гормоны: А-клетки продуцируют глюкагон, В-клетки — инсулин, D-клетки — самостатин. Основную массу островков Лангерганса (около 60 %) составляют В-клетки.

Поджелудочная железа лежит в брыжейке двенадцатиперстной кишки, на печени, разделяясь на правую, левую и среднюю доли. Проток поджелудочной железы открывается в двенадцатиперстную кишку самостоятельно или вместе с желчным протоком. Иногда встречается добавочный проток, который впадает в двенадцатиперстную кишку самостоятельно.

Внешняя секреция поджелудочной железы состоит в периодическом выделении в двенадцатиперстную кишку панкреатического сока, который играет большую роль в процессах пищеварения.

Панкреатический сок содержит следующие ферменты: амилазу, липазу и трипсин. Секреция панкреатического сока регулируется нервными (блуждающий и симпатический нервы), а также гуморальными механизмами. Секреция сока поджелудочной железы связана с приемом пищи, причем работами И. П. Павлова с сотрудниками установлено, что различная по составу пища вызывает выделение разнообразного по объему и содержанию ферментов панкреатического сока.

Значительным сокогонным действием обладают овощные отвары, углеводы, меньшим — жиры и незначительным — белки.

Наиболее сильным возбудителем секреторной деятельности поджелудочной железы является соляная кислота желудочного сока, которая при поступлении в тонкую кишку активирует выделение клетками слизистой оболочки кишки особых веществ — секретина (стимулирует образование жидкой части секрета поджелудочной железы) и панкреозимина (влияет на выработку ферментов панкреатического сока).

Из лекарственных веществ усиливают секрецию поджелудочной железы пилокарпин, морфин, витамин А, сульфат магния, а тормозят секрецию гистамин и атропин.

Внутрисекреторная функция состоит в выработке поджелудочной железой гормонов инсулина и глюкагона, играющих большую роль в регулировании углеводного и липидного обмена. Инсулин вырабатывается в бета-клетках островков Лангерганса. Под влиянием его происходит фиксация гликогена в печени, поглощение тканями сахара из крови и уменьшение липемии. Глюкагон вырабатывается в альфа-клетках островков Лангерганса и действует на содержание сахара в крови противоположным, чем инсулин, образом.

Другая функция, которая приписывается альфа-клеткам,— это участие в выработке липотропного вещества — липокаина, препятствующего жировому перерождению печени.

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Периферическая нервная система человека, функции, строение

Нервная система человека является самым главным органом, который делает нас нами во всех смыслах этого слова. Это совокупность различных тканей и клеток (нервная система состоит не только из нейронов, как многие думают, но также других особенных специализированных телец), которая отвечают за нашу чувствительность, эмоции, мысли, а также за работу каждой клетки нашего тела.

Её функции в целом — сбор информации о теле или окружающей среде при помощи огромного количества рецепторов, передача этой информации в специальные аналитические или командные центры, анализ полученной информации на сознательном или подсознательном уровне, а также выработка решений, передача этих решений внутренним органам или мышцам с контролем за их исполнением при помощи рецепторов.

Все функции условно можно поделить на командные или исполнительные. К командным относятся анализ информации, управление организмом, мышление. Вспомогательные функции, такие как контроль, сбор и передача информации, а также командных сигналов к внутренним органам, являются предназначением периферической нервной системы.

Хоть вся нервная система человека обычно понятийно разделяется на две части, центральная и периферическая нервные системы являются одним целым, так как одно невозможно без другого, а нарушение работы одной тут же влечёт патологические сбои в работе второй, в итоге как следствие – к нарушению работы организма или двигательной активности.

Как устроена ПНС и её функции

Периферическая нервная система состоит из всех нервных волокон, сплетений и нервных окончаний, которые находятся за пределами спинного, а также головного мозга, которые являются органами ЦНС.

Проще говоря, периферическая нервная система – это нервы, которые располагаются по периферии организма за пределами органов центральной нервной системы, которые занимают центральное место.

Структура ПНС представлена черепными и спинальными нервами, которые являются своеобразными главными проводящими нервными кабелями, собирающими информацию от более мелких, но очень многочисленных нервов, расположенных по всему телу человека, напрямую соединяя ЦНС с органами тела, а также нервов вегетативной и соматической нервной системы.

Деление ПНС на вегетативную и соматическую также немного условно, оно происходит в соответствии с выполняемыми нервами функциями:

Соматическая система состоит из нервных волокон или окончаний, задача которых сбор, доставка чувственной информации от рецепторов или органов чувств к ЦНС, а также осуществление моторной активности, согласно сигналам центральной нервной системы. Она представлена двумя типами нейронов: сенсорными или афферентными и моторными – эфферентными. Афферентные нейроны отвечают за чувствительность и доставляют информацию для ЦНС об окружающей человека обстановке, а также о состоянии его тела. Эфферентные, напротив, доставляют информацию от ЦНС к мышечным волокнам.

Вегетативная нервная система занимается регуляцией деятельности внутренних органов, осуществляя контроль за ними при помощи рецепторов, передавая возбуждающие либо тормозящие сигналы от ЦНС к органу, заставляя его работать, либо отдыхать. Именно вегетативная система в тесном сотрудничестве с ЦНС обеспечивает гомеостаз, регулируя внутреннюю секрецию, сосуды, а также многие процессы в организме.

Устройство вегетативного отдела также довольно сложно и представлено тремя нервными подсистемами:

  • Симпатическая нервная система – совокупность нервов, отвечающая за возбуждение органов и как следствие – усиление их активности.
  • Парасимпатическая – наоборот, представлена нейронами, чья функция заключается в угнетении или успокоении органов либо желёз для снижения их производительности.
  • Метасимпатическая состоит из нейронов, способных стимулировать сократительную деятельность, которые находятся в таких органах, как сердце, лёгкие, мочевой пузырь, кишечник и другие полые органы, способные к сокращению для выполнения своих функций.

Строение симпатической и парасимпатической систем довольно схоже. Они обе подчиняются особым ядрам (симпатическим и парасимпатическим, соответственно), расположенном в спинном или головном мозге, которые, анализируя полученную информацию, активируются и регулируют деятельность внутренних органов, отвечающих по большей части за переработку или секрецию.

Метасимпатическая же таких ядер не имеет и функционирует как отдельные комплексы микроганглионарных образований, нервов, которые их соединяют и отдельных нервных клеток с их отростками, которые полностью находятся в контролируемом органе, потому она действует несколько автономно от ЦНС. Её пункты управления представлены особыми интрамуральными ганглиями – нервными узлами, которые отвечают за ритмичные сокращения мышц и могут регулироваться при помощи гормонов, вырабатываемых эндокринными железами.

Все нервы симпатической или парасимпатической вегетативной подсистемы совместно с соматическими соединяются в большие главные нервные волокна, которые ведут к спинному мозгу, а через него к головному, либо напрямую к органам головного мозга.

Заболевания, которым подвержена периферическая нервная система человека:

Периферические нервы, как все органы человека подвержены определённым заболеваниям или патологиям. Заболевания ПНС делятся на невралгии и невриты, являющиеся комплексами всевозможных недугов, различающиеся между собой по тяжести повреждения нерва:

  • Невралгии – заболевания нерва, вызывающие его воспаление без разрушения его структуры или гибели клеток.
  • Невриты – воспаления или травмы с разрушением структуры нервной ткани различной тяжести.

Неврит может возникнуть сразу по причине негативного воздействия на нерв любого происхождения или развиться из запущенной невралгии, когда из-за отсутствия лечения воспалительный процесс стал причиной начавшейся гибели нейронов.

Также все недуги, какие могут коснуться периферических нервов, делятся по топографически-анатомическому признаку, а проще говоря — по месту возникновения:

  • Мононеврит – заболевание одного нерва.
  • Полиневрит – заболевание нескольких.
  • Мультиневрит – заболевание множества нервов.
  • Плексит – воспаление сплетений нервов.
  • Фуникулит – воспаление нервных канатиков – проводящих нервные импульсы каналов спинного мозга, по которым движется информация от периферических нервов к ЦНС и обратно.
  • Радикулит – воспаление корешков периферических нервов, при помощи которых они крепятся к спинному мозгу.

Ещё их различают по этиологии — причине, которая вызвала невралгию или неврит:

  • Инфекционного характера (вирусного или бактериального).
  • Аллергического.
  • Инфекционно-аллергического.
  • Токсического
  • Травматического.
  • Компрессионно-ишемического – заболевания по причине сдавливания нерва (различные защемления).
  • Дисметаболического характера, когда они вызваны нарушением обмена веществ (недостаток витамина. Выработки какого-то вещества и т.д.)
  • Дисциркуляторного – по причине нарушения кровообращения.
  • Идеопатического характера – т.е. наследственного.

Нарушения работы периферической нервной системы

При поражении органов ЦНС люди ощущают изменение умственной активности или нарушение работы внутренних органов, так как контролирующие либо управляющие центры посылают неправильные сигналы.

Когда происходит поломка периферических нервов, сознание человека обычно не страдает. Можно отметить только возможные неверные ощущения от органов чувств, когда человеку кажется другим вкус, запах или мерещатся тактильные прикосновения, мурашки и т.п., по причине сбоев в работе рецептов, либо нейронного волокна, по которому они передаются в ЦНС, искажаясь уже по пути. Также проблемы могут возникнуть при проблемах с вестибулярным нервом, при двустороннем поражении которого человек может потерять ориентацию в пространстве.

Обычно, поражения периферических нейронов приводят, прежде всего, к болевым ощущениям или потере чувствительности (тактильной, вкусовой, зрительной и т.д.). Затем происходит прекращение работы органов, за которые они отвечали (паралич мышц, остановка сердца, невозможность глотать и т.п.) или нарушение работы из-за неправильных сигналов, которые были искажены во время прохождения по повреждённой ткани (парезы, когда теряется мышечный тонус, потливость, повышенное слюноотделение).

Серьёзные повреждения периферической нервной системы могут привести к инвалидности или даже смерти. Но может ли ПНС восстанавливаться?

Всем известно, что центральная нервная система не способна регенерировать свои ткани путём деления клеток, так как нейроны у людей перестают делиться по достижении определённого возраста. То же самое относится к периферической нервной системе: её нейроны также не способны размножаться, но могут в маленькой степени восполняться за счёт стволовых клеток.

Однако, люди, перенёсшие операцию, и временно терявшие чувствительность кожи области разреза, замечали, что через какое-то длительное время она восстанавливалась. Многие думают, что это проросли новые нервы вместо разрезанных старых, но на самом деле это не так. Отрастают не новые нервы, а старые нервные клетки образуют новые отростки, а затем прокидывают их в неконтролируемую область. Эти отростки могут быть с рецепторами на концах или переплестись, образовав новые нервные связи, а, следовательно – новые нервы.

Восстановление нервов периферической системы происходит точно также, как восстановление ЦНС путём образования новых нервных связей и перераспределения обязанностей между нейронами. Такое восстановление восполняет утраченные функции зачастую лишь частично, а также не обходится без казусов. При сильном поражении каких-либо нервов, один нейрон может относиться не к одной мышце, как должно быть, а к нескольким при помощи новых отростков. Иногда эти отростки проникают довольно не логично, когда при произвольном сокращении одной мышцы происходит непроизвольное сокращение другой. Такое явление довольно часто происходит при запущенном неврите троичного нерва, когда во время еды человек начинает непроизвольно плакать (синдром крокодильих слёз) либо нарушается его мимика.

Как вариант восстановления периферических волокон возможен метод нейрохирургического вмешательства, когда они просто сшиваются. В дополнение разрабатывается новейший метод с использованием чужих стволовых клеток.

nashinervy.ru


Смотрите также